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Dynamical systems

A dynamical system on a space X is (X, G, ¢) consists of a
topological group G together with an action p: G x X — X, that is,

a continuous map such that (g is the identity and ¢ 0 v = Qs 4.
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C*-dynamical systems

We say that (A, G, «) is a C*-dynamical system on a C* algebra A if

G is a locally compact group and a: G — Aut(A) is a continuous
homomorphism.

Theorem:

If A= C(X) is a commutative C*-algebra, there is a correspondence

between the dynamical systems on X and those on A.
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Definition

Let (A, G, ¢) be a dynamical system, that is, A is a C* algebra, G is

a locally compact group and ¢ is an action of GG on A.
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Let (A, G, ¢) be a dynamical system, that is, A is a C* algebra, G is

a locally compact group and ¢ is an action of GG on A.

If T: X — X is a homeomorphism, then o: C(X) — C(X) defined
by a(f) = f oT~! is an automorphism of C(X).
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Let (A, G, ¢) be a dynamical system, that is, A is a C* algebra, G is

a locally compact group and ¢ is an action of GG on A.

If T: X — X is a homeomorphism, then o: C(X) — C(X) defined
by a(f) = f oT~! is an automorphism of C(X).

Hence, given a homeomorphism 7': X — X one obtains a dynamical
system (C'(X),Z, «).
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C* crossed products

Let (X, G, a) be a dynamical system. If f: G — A is continuous and

has compact support, define

£l = [ 1£()dpcs)
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C* crossed products

Let (X, G, a) be a dynamical system. If f: G — A is continuous and

has compact support, define

£l = [ 1£()dpcs)

Call L'(G, A) the completion of such functions with this norm.
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C* crossed products

Addition in L'(G, A) is pointwise.
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C* crossed products

Addition in L'(G, A) is pointwise. Consider the product

(fxh) () = [ Fa (a(t ")) du(t)
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C* crossed products

Addition in L'(G, A) is pointwise. Consider the product

(fxh) () = [ Fa (a(t ")) du(t)

And a convolution

fr(s) = as(f(s7)).
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C* crossed product

We call the crossed product of the dynamical system (A, G, «),

denoted C*(A, G, a), the completion of the algebra L'(G, A) with
respect a suitable norm.
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A theorem of Giordano, Putnam and Skau

In 1995, Giordano, Putnam and Skau tried to prove analogous results
to those of Dye for (topological) dynamical system. They only

succeeded for Cantor minimal systems.
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Relations on dynamical systems (G = Z)

We say that (X1, ¢1) and (X5, ¢2) are conjugate if there is a
homeomorphism F': X; — X5 such that F'o ¢ = ¢ 0 F.

We say that (X1, ¢1) and (X3, ¢2) are flip conjugate if (X1, ¢1) is
conjugate to either (Xy, ¢3) or to (Xo, 5 ).
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Relations on dynamical systems (G = Z)

We say that (X3, ¢1) and (X3, ¢2) are orbit equivalent if there is a
homeomorphism (orbit map) F': X; — X, such that

F(Orbg, (z)) = Orby, (F(x)) for all x € X;. Call orbit cocycles n(z)
and m(z) the functions such that F(¢,(z)) = ¢3") (F(x)) and
bs(F(z)) = F(67"" ().

We say that (X1, ¢1) and (X3, ¢2) are orbit equivalent if the is an
orbit map F' with cocicles admiting at most one point of

discontinuity.
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(X1, ¢1) and (X2, ¢o) are flip equivalent if and only if
C*(X1,¢1) = C*(Xy, ¢2) via an isomorphisms mapping C(X;) onto
C(Xy).
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(X1, ¢1) and (Xa, ¢2) are strong orbit equivalent if and only if
C*(X1,¢1) = C*(Xa, ¢2) are isomorphic.
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Let (X, ¢) be a dynamical system. The suspension of (X, ¢) is a

continuous flow (Y, T') where
Y =X x[0,1]/(z,1) ~ (¢(x),0).

and
T [z, s]) = [z,s + 1]
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Flow equivalence

(X1, ¢1) and (X3, ¢2) are flow equivalent if their suspension flows
(Y1,T1) and (Y3, Ty) are topologically equivalent, that is, there is a
homeomorphism Y; — Y5 which maps each or orbit of 77 to an orbit

of Ty, preserving orientation.
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Banach Algebras

A Banach algebra A is a complete normed algebra.
We assume all our algebras are unital.

Examples:

e If X is compact Hausdorff then C'(X) = {f: X — C} with
norm ||{|o-

@ More general, if A is a Banach algebra then
C(X,A)={f: X — A}.
@ Any C*- algebra
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Mapping torus

Let a € Aut(A). We define

Tu(A) = {f:[0,1] = A| F(1) = a(£(0))} € C([0,1], A).

It naturally induces a dynamical system (T,(A), R, ¢) given by

6u(f)(s) = fs +1) = " f ({s +1}))
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Mapping torus

If (X, ) is a dynamical system and (Y, T) its suspension flow, then
C(Y) is the mapping torus of (C'(X), ), where a(f) = fo ¢t
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Mapping torus

We say that o € Aut(A) and 3 € Aut(B) are conjugate if there is
an isomorphism v: A — B such that oy =yoa.

We say a and 3 are flip conjugate if o is conjugate to either 3 or 371
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Mapping torus

If & and 3 are flip conjugate then T, (A) is isomorphic to Tj(B)
Proof: If v is the conjugacy then h: T, (A) — Ts+1(B) given
R(f)(t) = ~(f(t)) does the job. In the case of conjugacy with 571,
verify that r: T3(B) — Ts-1(B) given by r(f)(t) = f(1 —t) is an

isomorphism.
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Mapping torus

iWhat if T,,(A) is isomorphic to T3(B) 7

« and 3 are not necessary flip conjugate.

Example: Homeomorphisms of X which are flow equivalent but not
flip conjugate.

Note: Isomorphism of mapping tori must mean some kind of

noncommutative flow equivalence of (A, «) and (B, ).
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But true if A is simple (and unital).

Theorem 5.1 (10, Perez-Ramirez).

Let A and B be a unital simple Banach algebras and let a and 3 be
automorphisms of A and B, respectively. The mapping torus T, (A)
and T (B) are isomorphic if and only if a and (3 are flip conjugate.
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Actually,  and f3 are flip conjugate if the isomorphism ¢ between

their mapping torus maps maximal ideals ker ev; into maximal ideals
of the same form, where ev;: T,,(A) — A denotes evaluation at ¢, so
that

ker evy = {f e To(A): f(t) = 0}

And use same notation for evaluation in Tjs(B).
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Maximal ideals

Work of de B. Yood (1951) and subsequent works (for instance W. J.
Hery (1976), M. Abel and M. Abtahi (2013)) establish conditions for

a bijection (M denote the set of maximal ideals)

h: X x M(A) — M (C(X,A))
given by
h(x, M) ={f € C(X,A): f(z) e M}
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Maximal ideals

Note that Ti4(A) = C’(Sl, A) and in general T,,(A) is a subalgebra
de 0([0, 1],A).

Also, if a € A then the function f(t) = (1 — t)a + t a(a) belongs to
To(A) and f(0) = a.

An ideal I of T,,(A) is called fixed if

ﬂ {t € 10,1]: f(t) not invertible} # ()

fel
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Maximal ideals

Let M be any ideal of A, t € [0,1] and a € A.
Q Thereis f;, € T,(A) such that f, ,(t) = a.
@ The set Mypm ={f € T,(A): f(t) € M} is an ideal of T, (A).
© M, is maximal if and only if M is maximal.

Q M is a fixed maximal ideal of T,,(A) if and only if M = My, am
for some t, € [0,1] and M a maximal ideal in A.
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Maximal ideals

Theorem 4.
Let A be a unital Banach algebra and let o« be an automorphism of
A. Then every proper ideal in T, (A) is fixed.
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Maximal ideals

Hence, if A is simple then every maximal ideal in T},(A) is the kernel

of an evaluation.
The isomorphism of the mapping tori maps ker ev; to kerevy

T.(A)/ ker evy is isomorphic to A.
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Maximal ideals

Hence, if A is simple then every maximal ideal in T},(A) is the kernel

of an evaluation.
The isomorphism of the mapping tori maps ker ev; to kerevy

T.(A)/ ker evy is isomorphic to A.

Thanks!
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