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Main Question:
What information on a quantum system, S,

can be extracted from long, time-ordered

sequences of direct (projective)
measurements ?

Inspired by:
Experiments of S. Haroche et al.
Theoretical work by M. Bauer and D. Bernard T. Benoist,
C. Pellegrini, H. Maassen and B. Kümmerer.
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S is the composition of two subsystems, P and E, where P is
the system we actually wish to study, while E consists of all the
experimental equipment - probes, detectors, and other
measuring devices - used to observe.
Example:
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General Framework,

Observables at Infinity

and Emergence of Facts
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We consider an isolated quantum system S characterized by
the data (HS, {U(t , s)}t ,s∈R, E), where

HS is the Hilbert space of pure state vectors of S,
{U(t , s)}t ,s∈R is a family of unitary operators on HS
representing time evolution.
E ⊂ B(HS) is a von Neumann -algebra of operators on HS
representing physical quantities of S that can be
measured/observed in projective measurements.

We additionally suppose that there is an instrument consisting
in a finite family of commuting projections {πξ}ξ∈σ, such that∑

ξ

πξ = 1HS .
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Repeated projective measurements of quantities in E are
carried out at times i ∈ N.
The time evolution of the projections πξ are given by

πξ(j) := U(0, j)πξU(j ,0) ∈ E , j ∈ N .

For every initial density matrix ρ we define

µρ(ξ1, ..., ξn) := Tr(πξn(n) · · · πξ1(1)ρπξ1(1) · · · πξn(n)),

the probability for observing a sequence of measurement
results, ξi ∈ σ, observed at times i , i = 1,2, ...,n,
corresponding to “events” (πξ1(1), ..., πξn(n)).
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We denote by Ξ := σN, with elements

ξ := (ξ1, ξ2, · · · ).

We define the measure space (Ξ,F , µρ), where F is σ−
algebra generated by cylinder sets and the measure µρ is
extended to F (we use Kolmogorov Theorem).
We denote by Fn the σ-algebra generated by cylinder sets of
the form σn × C ⊂ Ξ, where C is a cylinder set. Then we set

F∞ =
⋂
n

Fn. (1)

This is the algebra of tail-events. Elements of this algebra do
not depend on any finite number of coordinates.
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Tail Observables: Representation of the algebra of
observables at infinity
We denote by

E≥n

the von Neumann algebra generated by projections of the form
πξ(m), or every m ≥ n and every ξ ∈ σ. It represent all
observables (operators) that might be observed after time n.
The algebra of tail-observables is

E∞ :=
⋂
n

E≥n.
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For every F-measurable function f , we define an operator Φ(f )
through the duality

Tr(ρΦ(f )) =
∫

fdµρ. (2)

Then Φ defines a POVM (positive operator valued measure),
[B-Fraas-Froehlich-Schubnel].
Next we set

O∞ := L∞(Ξ,F∞,Φ)

the algebra of observables at infinity.
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For every f ∈ L∞, we define the operator Φ≥tm(f ) ∈ E by the
equation

ρ(Φ≥tm(f )) :=
∫
Ξ

f (ξ)dµ(≥tm)
ρ (ξ(m,∞)), (3)

for every normal state ρ. The measure µ
(≥tm)
ρ is obtained by the

quantities

µ(≥tm)
ρ (ξ(m,n)) := ρ

(
Πξ(m,n)

(
Πξ(m,n)

)∗)
, (4)

for every n ≥ m (we recall that f does not depend on the first
m − 1 coordinates).
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Assumption
We assume that E∞ is contained in the center of E and that
Φ≥m(f ) ∈ E∞, for every f ∈ O∞ and every m ∈ N.

Theorem (B-Fraas-Froehlich-Schubnel)
Φ restricted to O∞ is a representation (a ∗-algebra
homomorphism).
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For every f ∈ O∞ denote by µf
ρ the measure

µf
ρ(∆) :=

∫
∆

fdµρ.

For every density matrix ρ define Φ∗(f )ρ by the duality

Tr
(
(Φ∗(f )ρ)A

)
= Tr

(
ρΦ(f )A

)
, A ∈ E .

Theorem (B-Fraas-Froehlich-Schubnel)
The following equation holds true:

µf
ρ = µΦ∗(f )ρ (5)
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F∞-ergodic desintegration of the measures µρ.

Theorem (B-Fraas-Froehlich-Schubnel)

There exist a probability space (Ξ∞,Σ∞,P) and a family of
measures µν , ν ∈ Ξ∞, such that

µρ =

∫
Ξ∞

µνdP,

and the measures µν , ν ∈ Ξ∞, are mutually singular and
F∞−ergodic (when restricted to F∞ take only the values 0 and
1).

The quantities ν ∈ Ξ∞ are interpreted as facts of the system.
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A Family of Models

of Quantum Systems
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Non-Demolition Measurements
The system S is composed of a subsystem P of interest to an
experimentalist and of a subsystem E consisting of a
measurement device, so that HS = HP ⊗HE .
The reduced evolution on P is encoded in a family of
completely positive maps Φ̃ξ (ξ ∈ σ) acting on B(HP),
describing the evolution of observables. The evolution of states
is given by the dual maps Φ̃∗ξ. Then we have

µ̃ρ(ξ1, · · · , ξk ) = Tr(Φ̃∗ξk ◦ · · · ◦ Φ̃∗ξ1 [ρ]). (6)

The corresponding reduced state ρ̃(k)(ξ1, · · · , ξk ) of P is given
by

ρ̃(k)(ξ1, · · · , ξk ) =
Φ̃∗ξk ◦ · · · ◦ Φ̃∗ξ1 [ρ]

Tr(Φ̃∗ξk ◦ · · · ◦ Φ̃∗ξ1 [ρ])
. (7)
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The non-demolition property is encoded by the condition:
Φ̃ξ ◦ Φ̃ξ′ = Φ̃ξ′ ◦ Φ̃ξ, for all ξ, ξ′ ∈ σ (that implies the
exchangeability of the measures). We denote by {Πν}ν∈Ξ∞ a
joint spectral decomposition of the commuting family
{Φ̃ξ[1]}ξ∈σ.

Theorem (Purification)

There exists a random variable Θ : Ξ → Ξ∞ such that∥∥∥ρ̃(k) − ΠΘρΠΘ

Tr(ΠΘρΠΘ))

∥∥∥ → 0, µ̃ρ- a.s., (8)

as k → ∞.
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Non non-Demolition Measurements:

(Indirect measurements of physical quantities
varying slowly in time)
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We keep the formalism of the previous section but drop the
non-demolition hypothesis. The complete positive maps are
now denoted by Φ

(k)
ξ and only depend on the history

ξ(k) = (ξ1, ..., ξk ) and the time k . We define the density matrices
and measures as before, but we drop the tildes.

Assumption

We assume that there exist constants d1 ∈ [0,1) and
d2 ∈ (d1,1] such that, for all n ∈ N, for every ξ ∈ σ and every ξ
with ξk = ξ,

(i) ∥Φ(k)
∗ξ − Φ̃∗ξ∥ ≤ d1∥Φ̃∗ξ∥,

(ii) Tr(Φ̃∗ξρ) ≥ d2∥Φ̃∗ξ∥, for all density matrices ρ on HP .
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Theorem (Jump Process)

Let ε ∈ (0,1]. If r is large enough and if d1 is small enough, then

µω

{
ξ

∣∣∣ ∃ν ∈ σ(N ) : ∥ρ(r)(ξ)−Πνρ
(r)(ξ)Πν∥ ≤ ε

}
≥ 1−ε, (9)

uniformly with respect to ρ and r .
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Some Proofs (Ideas)
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Φ is a POVM:
Let f ∈ L∞(Ξ). For every positive linear functional ρ, we have
that ∣∣∣∣∫

Ξ
f (ξ)dµρ(ξ)

∣∣∣∣ ≤ ∫
Ξ
||f ||∞dµρ(ξ) = ||f∞||ρ(1).

This bound implies that Φ(f ) ∈ E−. The properties of a POVM
are inherited from the corresponding properties of integrals. For
example ρ(Φ(Ξ)) = 1 for all states ρ implies Φ(Ξ) = 1. Next we
remind that, by definition,

ρ
(
Φ(∆)

)
= µρ(∆), (10)
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for any positive functional ρ. Therefore, for any disjoint
sequence (∆n)n∈N,

ρ
(
Φ
(⋃

n

∆n
))

= µρ

(⋃
n

∆n

)
=

∑
n

µρ

(
∆n

)
=

∑
n

ρ
(
Φ(∆n)

)
.

(11)
This shows that

Φ(
⋃
n

∆n) =
∑

n

Φ(∆n), (12)

where the series converges in the σ-weak topology (i.e. it also
converges weakly).
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Φ is a *homomorphism, restricted
to O∞:
Lemma

For every function f ∈ L∞(Ξ) there exists an increasing
sequence jn and a sequence of functions fn ∈ L∞(Ξ), only
depending only on the first jn coordinates, such that

w − lim
n→∞

Φ≥m(|fn − f |) = 0.

If in addition f ∈ O∞, then fn can be chosen such that it only
depends on the coordinates in, · · · , jn, for some increasing
sequences (in)n∈N, (jn)n∈N with m ≤ in < jn.
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An explicit calculation shows that

Φ(fn) =
∑

ξ(m−1)

Πξ(m−1)Φ≥tm(fn)
(
Πξ(1,m−1)

)∗
. (13)

Taking the limit when n tends to ∞, using our assumptions, we
get

Φ(f ) =
∑

ξ(m−1)

Πξ(m−1)Φ≥tm(fn)
(
Πξ(1,m−1)

)∗
= Φ(fn) (14)
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Next, we show that Φ|O∞ is a ∗homomorphism from O∞ to E∞.
It suffices to show that Φ(f · χ∆) = Φ(f ) · Φ(χ∆) for any cylinder
set ∆ ∈ Σ. The previous equality then easily extends to
arbitrary functions f ,g ∈ O∞ by a density argument. (Moreover,
compatibility with the ∗ operation is obvious).

Ballesteros Indirect Measurements and State Purification



Let fn be approximations of the function f as above and assume
that ∆ ∈ Σ1,m−1 for some m ∈ N. If n is such that in > m, we
have that

Φ(fn · χ∆) =
∑
ξ(m−1)

χ∆(ξ
(m−1)) Πξ1 ...Πξm−1 (15)

( ∑
ξ(m,jn)

fn(ξ(in,jn))Πξm ...Πξjn
Πξjn

...Πξim

)
Πξm−1 ...Πξ1 .
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Taking the limit when n tends to infinity we get

Φ(f · χ∆) =
∑
ξ(m−1)

χ∆(ξ
(m−1)) Πξ1 ... (16)

Πξm−1Φ≥tm(f )Πξm−1 ...Πξ1 = Φ(χ∆)Φ(f ),

where we use our assumptions and (14).

Ballesteros Indirect Measurements and State Purification



State Associated with f ∈ O∞ :

(Proof of Eq. (5))

Let f ∈ O∞. For a characteristic function χ∆ of a cylinder set ∆,
we have, using our assumptions, that

µΦ(f )∗ρ(∆) = ρ(Φ(f )Φ(χ∆)).

Eq. (16), we have established that Φ(f )Φ(χ∆) = Φ(fχ∆).
Hence µΦ(f )∗ρ(∆) = µf

ρ(∆).
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