Universality of Free Random Variables: Atoms for Non Commutative Rational Functions

Octavio Arizmendi

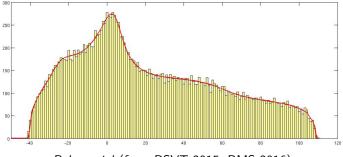
CIMAT

Mini-encuentro de Análisis Matemático y temas relacionados November 9, 2023. IIMAS, UNAM

伺 ト イヨト イヨト

э

Asymptotic Freeness



Polynomial (from BSVT 2015, BMS 2016)

The question of this talk: atoms in polynomials in free variables

イロン イロン イヨン イヨン

∃ 990

The question of this talk: atoms in polynomials in free variables

Atom: λ such that $\mu(\lambda) > 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Let A_n and B_n be selfadjoint matrices with eigenvalues $\lambda_1, \ldots, \lambda_n$ y ρ_1, \ldots, ρ_n .

• What is the nullity $(\dim(\ker)) P(A_n, B_n)$?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Let A_n and B_n be selfadjoint matrices with eigenvalues $\lambda_1, \ldots, \lambda_n$ y ρ_1, \ldots, ρ_n .

• What is the nullity $(\dim(\ker)) P(A_n, B_n)$?

With more information than the spectrum we cannot answer the question exactly . However we can say something about the next two related questions:

- What is the minimum nullity (over all matrices A_n and B_n) of P(A_n, B_n)?
- What is the nullity $P(A_n, B_n)$ if A_n are B_n randomly rotated?

Let A_n and B_n be selfadjoint matrices with eigenvalues $\lambda_1, \ldots, \lambda_n$ y ρ_1, \ldots, ρ_n .

• What is the nullity $(\dim(\ker)) P(A_n, B_n)$?

With more information than the spectrum we cannot answer the question exactly . However we can say something about the next two related questions:

- What is the minimum nullity (over all matrices A_n and B_n) of P(A_n, B_n)?
- What is the nullity $P(A_n, B_n)$ if A_n are B_n randomly rotated?

Obvious observation : By shifting $P(A_n, B_n) - \lambda$ we can consider the size of the subespace associado to λ .

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- {A_n} and {B_n} two sequences of self-adjoint matrices (deterministic) matrices with limit in distribution, μ and ν.
- U_n a unitary random matrix (with Haar measure on U(n)).
- *P* a non commutative polynomial.

Let μ_P be the limit distribution of $P(A_n, U_n B_n U_n^*)$.

¿Can we determine the atomic part of μ_P ?

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

That is, for each $\lambda \in \mathbb{R}$. ¿What is $\mu_P{\lambda}$?

Let $X_1, X_2, \dots X_n$ be free random variables.

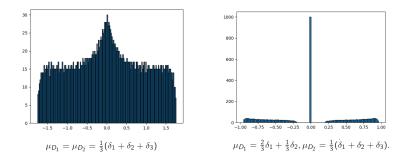
¿For a given polynomial, we can determine the atoms of $P(X_1, ..., X_d)$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Let $X_1, X_2, \dots X_n$ be free random variables.

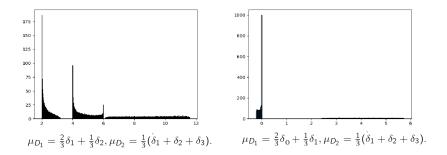
; For a given polynomial, we can determine the atoms of $P(X_1, ..., X_d)$?

From which information of X_i can we obtain the atoms of $P(X_1, ..., X_d)$?



◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

 $i(XY - YX) = i(D_1UD_2U - UD_2UD_1)$



イロン イヨン イヨン イヨン

2

Anticommutator $XY + YX = D_1UD_2U + UD_2UD_1$

- If X_i have no atoms, then also P(X₁,...,X_d) no atoms.
 (Mai-Speicher-Weber 15, Charlesworth-Shlyakhtenko 15).
- Exact solution for $X_1 + X_2$ (Bercovici-Voiculescu 98) and X_1X_2 Belinschi (2003).
- If the atoms X_i all have rational sizes, also the ones of $P(X_1,...X_d)$ Shlyaktenko-Skoufranis (2015).

Theorem

Let X_1, \ldots, X_d and Y_1, \ldots, Y_d be normal variables in a tracial W^* -probability spaces with X_1, \ldots, X_d being *-free and such that, for all $k = 1, \ldots, d$ and each $\lambda \in \mathbb{C}$, we have

 $\mu_{X_i}(\{\lambda\}) = \mu_{Y_i}(\{\lambda\}).$

Then, for each selfadjoint polynomial P in d non-commuting variables in d non-commuting variables,

 $\mu_{P(X)}(\{\lambda\}) \leq \mu_{P(Y)}(\{\lambda\}).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let X_1, \ldots, X_d and Y_1, \ldots, Y_d be normal variables in a tracial W^* -probability spaces with X_1, \ldots, X_d being *-free and such that, for all $k = 1, \ldots, d$ and each $\lambda \in \mathbb{C}$, we have

 $\mu_{X_i}(\{\lambda\}) = \mu_{Y_i}(\{\lambda\}).$

Then, for each selfadjoint polynomial P in d non-commuting variables in d non-commuting variables,

 $\mu_{P(X)}(\{\lambda\}) \leq \mu_{P(Y)}(\{\lambda\}).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

• P can be a rational function or matrix.

Theorem (A. Cebron, Speicher, Yin, 2021+)

Let $X = (X_1, ..., X_d)$ and $Y = (Y_1, ..., Y_d)$ two d-tuples of free random variables such that, for each $1 \le i \le d$ y $\lambda \in \mathbb{C}$, we have

 $\mu_{X_i}(\{\lambda\}) = \mu_{Y_i}(\{\lambda\}).$

Then, for each polynomial P, and each $\lambda \in \mathbb{C}$, we have

 $\mu_{P(X)}(\{\lambda\}) = \mu_{P(Y)}(\{\lambda\}).$

In other words, the atoms of polynomials in free variables only depend on the atomic part of each of the variables.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Comparison with matrices

Let $X = (X_1, \ldots, X_d)$ be a tuple of *-free normal random variables. We define

$$\mathcal{X}_m := \{Y = (Y_1, \ldots, Y_d) \in M_m(\mathbb{C})^d : \mu_{X_k}^p \leq \mu_{Y_k}^p\}$$

and $\mathcal{X} := \coprod_{m=1}^{\infty} \mathcal{X}_m$. By our main theorem

$$\mu_{P(X)}^{p} \leq \inf_{Y \in \mathcal{X}} \mu_{P(Y)}^{p}.$$

Proposition

Let $X = (X_1, \dots, X_d)$ be a tuple of *-free normal random variables. Then for any $P \in \mathbb{C}\langle x_1, \dots, x_d \rangle$

$$\mu_{P(X)}^{p} = \inf_{Y \in \mathcal{X}} \mu_{P(Y)}^{p}.$$

Our aim is to use the above theorem to obtain as much information of the atoms for the **free case** as we can from **specific choices** for Y_i 's.

イロン 不得 とくほう くほう 二日

Theorem (Bervocivi Voiculescu 98)

 $\mu \boxplus \nu$ has an atom at $a \in \mathbb{R}$ if and only if there exist $\lambda, \rho \in \mathbb{R}$ such that $\rho + \lambda = a$ and $\mu(\lambda) + \nu(\rho) > 1$. Moreover, if $\mu(\lambda) + \nu(\rho) > 1$, we have $\mu \boxplus \nu(a) = \mu(\lambda) + \nu(\rho) - 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Bervocivi Voiculescu 98)

 $\mu \boxplus \nu$ has an atom at $a \in \mathbb{R}$ if and only if there exist $\lambda, \rho \in \mathbb{R}$ such that $\rho + \lambda = a$ and $\mu(\lambda) + \nu(\rho) > 1$. Moreover, if $\mu(\lambda) + \nu(\rho) > 1$, we have $\mu \boxplus \nu(a) = \mu(\lambda) + \nu(\rho) - 1$.

Lower bound: Simple and intuitive. Take matrices $X, Y \in M_n$. If $dim(Ker(X - \lambda I)) = m = nt$ and $dim(Ker(Y - \rho I)) = I = ns$, then

$$dim(Ker(X + Y - \lambda I - \rho I)) \geq dim(Ker(X - \lambda I) \cap Ker(Y - \rho I))$$

$$\geq (m + I - n) = n(t + s - 1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Upper bound: Case 1. t + s > 1. Consider the matrices,

$$X_{n} = \begin{pmatrix} \lambda & & & \\ & \lambda & & \\ & \lambda_{i+1} & & \\ & & \ddots & \\ & & \lambda_{n} \end{pmatrix}, Y_{n} = \begin{pmatrix} \rho_{1} & & & \\ & \rho_{j} & & \\ & \rho_{i} & & \\ & & \rho_{i} \end{pmatrix}$$
where $i = sn \ge j = n - tn$.
Then
$$X_{n} + Y_{n} = \begin{pmatrix} \lambda + \rho_{1} & & & \\ & \lambda + \rho_{i} & & \\ & \lambda + \rho & & \\ & & \lambda + \rho & & \\ & & \lambda + \rho & & \\ & & \lambda_{i+1} + \rho & & \\ & & \lambda_{n} + \rho \end{pmatrix}$$

Octavio Arizmendi

Example: Free additive convolution

$$X_n + Y_n = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_2 & 0 \\ 0 & 0 & A_3 \end{pmatrix}$$

where

$$A_{1} = \begin{pmatrix} \lambda + \rho_{1} & & \\ & \ddots & \\ & & \lambda + \rho_{i} \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} \lambda + \rho & & \\ & \ddots & \\ & & \lambda + \rho \end{pmatrix},$$

and

$$A_3 = \begin{pmatrix} \lambda_{j+1} + \rho & & \\ & \ddots & \\ & & \lambda_n + \rho \end{pmatrix}.$$

We see that the size of the eigenspace associated to *a* is $dim(A_2) = i - j = (s + t - 1)n$.

Example: Free additive convolution

Upper bound: Case 1. t + s < 1.

We claim that we can reorder the eigenvalues in such a way that $\lambda_i + \rho_i \neq a$, for all *i*. Taking the matrices $X_n = diag(\lambda_1, \ldots, \lambda_n)$ and $Y_n = (\rho_1, \ldots, \rho_n)$, we see that $X_n + Y_n = diag(\lambda_1 + \rho_1, \ldots, \lambda_n + \rho_n)$ which has no eigenvalue equal to *a*, as desired.

Ξ.

Upper bound: Case 1. t + s < 1.

We claim that we can reorder the eigenvalues in such a way that $\lambda_i + \rho_i \neq a$, for all *i*. Taking the matrices $X_n = diag(\lambda_1, \ldots, \lambda_n)$ and $Y_n = (\rho_1, \ldots, \rho_n)$, we see that $X_n + Y_n = diag(\lambda_1 + \rho_1, \ldots, \lambda_n + \rho_n)$ which has no eigenvalue equal to *a*, as desired.

Proof of claim: We prove this by induction on *n*. For n = 1 and n = 2, it is clear. Consider a reordering of $\{\lambda_i, \rho_i\}$ such $\lambda_i + \rho_i \neq a$ for $i \leq n-1$ which is possible by induction. Now consider $\lambda_n + \rho_n$. If $\lambda_n + \rho_n \neq a$ we are done. Otherwise, if $\lambda_n + \rho_n = a$, then let

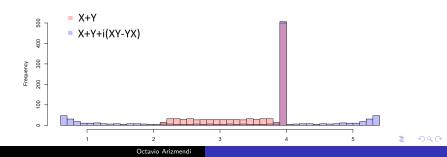
$$S = \{j \in [n-1] \mid \text{such that } \lambda_j = \lambda_n \text{ or } \rho_j = \rho_n \}.$$

If |S| = n - 1, by choosing for each j, ρ_j or λ_j , together with λ_n , ρ_n we have that $sn + tn \ge n + 1$, which yields a contradiction. Finally, if $|S| \le n - 2$, there exists j such that $\lambda_j \ne \lambda_n$ and $\rho_j \ne \rho_n$. Since $\lambda_j + \rho_n \ne a$ and $\lambda_n + \rho_j \ne a$, we get the desired reordering.

(Injective) Polynomials in two variables

Theorem

Let X and Y be free and $a \in \mathbb{R}$. Let P satisfy that for all λ, ρ such that $P(\lambda, \rho) = a$ then $P(\lambda, \tilde{\rho}) \neq a$ and $P(\tilde{\lambda}, \rho) \neq a$ whenever $\lambda \neq \tilde{\lambda}$ and $\rho \neq \tilde{\rho}$. Then P(X, Y) has an atom at a if and only there are λ and ρ such that X has an atom at λ of size s and Y has an atom at ρ of size t, such that r = t + s - 1 > 0 and $P(\lambda, \rho) = a$. Furthermore, if r > 0, and s(a) and t(a) denote the mass of this (unique) atoms, then the mass at a is given by s(a) + t(a) - 1.



Proposition

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider a tuple $X = (X_1, ..., X_d)$ of selfadjoint operators in \mathcal{M} . Suppose that for each i, $\mu_i(\lambda_i) \ge t_i$ for some $\lambda_i \in \mathbb{R}$ and $t_i \in [0, 1]$. If $t_1 + \cdots + t_d > d - 1$ then for any selfadjoint polynomial $P \in \mathbb{C}\langle x_1, \ldots, x_d \rangle$, the measure $\mu_{P(X)}$ has an atom at $P(\lambda)$ of size at least $t_1 + \cdots + t_d - (d - 1)$, where $\lambda := (\lambda_1, \ldots, \lambda_d)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Let (\mathcal{M}, τ) be a tracial W^* -probability space and consider a tuple $X = (X_1, ..., X_d)$ of selfadjoint operators in \mathcal{M} . Suppose that for each i, $\mu_i(\lambda_i) \ge t_i$ for some $\lambda_i \in \mathbb{R}$ and $t_i \in [0, 1]$. If $t_1 + \cdots + t_d > d - 1$ then for any selfadjoint polynomial $P \in \mathbb{C}\langle x_1, \ldots, x_d \rangle$, the measure $\mu_{P(X)}$ has an atom at $P(\lambda)$ of size at least $t_1 + \cdots + t_d - (d - 1)$, where $\lambda := (\lambda_1, \ldots, \lambda_d)$.

Proof

- For each *i*, let p_i be such $Xp_i = \lambda_i p_i$ for all $i \in \{1, ..., d\}$ and $\tau(p_i) = t_i$.
- Then for $p := \min(p_1, \ldots, p_d)$, we have $P(X)p = P(\lambda)p$.
- Finally $\tau(p) \ge \tau(p_1) + \cdots + \tau(p_d) (d-1) = t_1 + \cdots + t_d + d 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Definition

Let $P \in \mathbb{C}\langle x_1, \ldots, x_d \rangle$ be given. For $a \in \mathbb{R}$, if $P(\rho_1, \ldots, \rho_i, \ldots, \rho_d) = a$ and

$$P(\rho_1,\ldots,\rho_i,\ldots,\rho_d) \neq P(\rho_1,\ldots,\tilde{\rho}_i,\ldots,\rho_d)$$

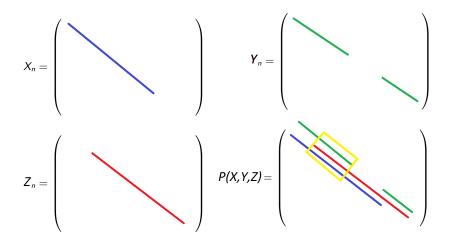
whenever $\rho_i \neq \tilde{\rho}_i$ for any given scalar values $\rho_1, \ldots, \rho_{i-1}, \rho_{i+1}, \ldots, \rho_d$, then we say *P* is *injective* for *a*.

Theorem

Let $P \in \mathbb{C}\langle x_1, \ldots, x_d \rangle$ be injective for $a \in \mathbb{R}$ and let $a = P(\lambda_1, \ldots, \lambda_d)$. Suppose that X_1, \ldots, X_d are free selfadjoint random variables and $X_i \sim \mu_i$ with $\mu_i(\{\lambda_i\}) = t_i$. If $t_1 + \ldots + t_d \ge d - 1$ then the distribution of $P(X_1, \ldots, X_d)$ has an atom at a of size exactly $t_1 + \ldots + t_d - (d - 1)$.

イロト 不得 トイヨト イヨト 二日

Idea of proof for 3 variables.



イロト イ団ト イヨト イヨト

æ

Theorem (Belinschi 2003)

If $\mu \in \mathcal{P}(\mathbb{R}^+)$ then $\mu \boxtimes \nu$ has an atom at $a \in \mathbb{R} \setminus \{0\}$ if and only if there exist $\lambda, \rho \in \mathbb{R}$ such that $\rho \lambda = a$ and $\mu(\lambda) + \nu(\rho) > 1$. Moreover

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

- If $\mu(\lambda) + \nu(\rho) > 1$, we have $\mu \boxtimes \nu(a) = \mu(\lambda) + \nu(\rho) 1$.
- The atom at 0 is given by $\mu \boxtimes \nu\{0\} = \max(\mu\{0\}, \nu\{0\})$.

Theorem (Belinschi 2003)

If $\mu \in \mathcal{P}(\mathbb{R}^+)$ then $\mu \boxtimes \nu$ has an atom at $a \in \mathbb{R} \setminus \{0\}$ if and only if there exist $\lambda, \rho \in \mathbb{R}$ such that $\rho \lambda = a$ and $\mu(\lambda) + \nu(\rho) > 1$. Moreover

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

- If $\mu(\lambda) + \nu(\rho) > 1$, we have $\mu \boxtimes \nu(a) = \mu(\lambda) + \nu(\rho) 1$.
- The atom at 0 is given by $\mu \boxtimes \nu\{0\} = \max(\mu\{0\}, \nu\{0\})$.

Lower bound follows from directly (next page for general case).

Proposition

Let X, $Y_1, ..., Y_d$ be selfadjoint operators in some tracial W*-probability space (\mathcal{M}, τ) . Suppose that $\mu_X(\{0\}) \ge t$. Then for any selfadjoint polynomial P of the form

$$P(x, y_1, ..., y_d) = \sum_{i=1}^k Q_{i,1}(x, y_1, ..., y_d) \times Q_{i,2}(x, y_1, ..., y_d),$$

the analytic distribution of $P(X, Y_1, ..., Y_d)$ has an atom at 0 whose size is at least $\max(kt - (k - 1), 0)$.

イロト イポト イヨト ・ ヨ

Proposition

Let X, $Y_1, ..., Y_d$ be selfadjoint operators in some tracial W*-probability space (\mathcal{M}, τ) . Suppose that $\mu_X(\{0\}) \ge t$. Then for any selfadjoint polynomial P of the form

$$P(x, y_1, ..., y_d) = \sum_{i=1}^k Q_{i,1}(x, y_1, ..., y_d) \times Q_{i,2}(x, y_1, ..., y_d),$$

the analytic distribution of $P(X, Y_1, ..., Y_d)$ has an atom at 0 whose size is at least $\max(kt - (k - 1), 0)$.

Proof

$$rank(P(X, Y_1, ..., Y_d)) \leq \sum_{i=1}^{k} rank(Q_{i,1}(X, Y_1, ..., Y_d)XQ_{i,2}(X, Y_1, ..., Y_d))$$

$$\leq krank(X) = k(1-t),$$

イロト イポト イヨト ・ ヨ

 $\mu \boxtimes \nu\{0\} \le \max(\mu\{0\}, \nu\{0\})$. We may assume that $\mu \sim X_n^2$ and $\nu \sim Y_n$. Consider X_n and Y_n ,

with $\lambda_i \neq 0$ for $0 \leq i \leq m$ and $\rho_j \neq 0$, for $0 \leq j \leq l$. Then, if r = min(l, m), we have

$$X_{n}Y_{n}X_{n} = \begin{pmatrix} \lambda_{1}\rho_{1}\lambda_{1} & & & \\ & \ddots & & \\ & & \lambda_{r}\rho_{r}\lambda_{r} & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

The result follows since $Null(X_nY_nX_n) = max\{Null(X_n), Null(X_n)\}_{\mathbb{R}}$

Theorem

Let $X_1 \dots, X_d$, be free. The possible atoms of $P(X_1, \dots, X_d)$ are contained in the set

 $\{P(\rho_1,...,\rho_d) \mid \rho_i \text{ is atom of } X_i, \forall i = 1,...,d\}.$

Furthermore, if $X_1, \ldots, X_d \in M_n(\mathbb{C})$ and $\lambda \in \mathbb{R}$, then $\mu_{P(X_1,\ldots,X_d)}(\{\lambda\}) \leq k(\lambda)/n$, where

$$k(\lambda) := \min_{\sigma_1,...,\sigma_d \in S_n} |\{j \in \{1,...n\} : p(\lambda_{\sigma_1(j)}^{(1)},...,\lambda_{\sigma_d(j)}^{(d)}) = \lambda\}|,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

where, for i = 1, ..., d, $\{\lambda_j^{(i)}\}_{j=1}^n$ denotes the eigenvalues of X_i .

Theorem

Let $X_1 \dots, X_d$, be free. The possible atoms of $P(X_1, \dots, X_d)$ are contained in the set

 $\{P(\rho_1,...,\rho_d) \mid \rho_i \text{ is atom of } X_i, \forall i = 1,...,d\}.$

Furthermore, if $X_1, \ldots, X_d \in M_n(\mathbb{C})$ and $\lambda \in \mathbb{R}$, then $\mu_{P(X_1,\ldots,X_d)}(\{\lambda\}) \leq k(\lambda)/n$, where

$$k(\lambda) := \min_{\sigma_1,...,\sigma_d \in S_n} |\{j \in \{1,...n\} : p(\lambda_{\sigma_1(j)}^{(1)},...,\lambda_{\sigma_d(j)}^{(d)}) = \lambda\}|,$$

where, for i = 1, ..., d, $\{\lambda_j^{(i)}\}_{j=1}^n$ denotes the eigenvalues of X_i . **Example:** i(XY - YX) can only have atoms at 0. We'll see k(0) is not an optimal bound.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

2x2 matrices

Now we consider $X_n, Y_n \in M_{2n}(\mathbb{C})$ matrices consisting of diagonal blocks of size 2×2 , A_1, \ldots, A_n and B_1, \ldots, B_n on their diagonals, respectively.

$$X_n = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A_n \end{pmatrix}, Y_n = \begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & B_n \end{pmatrix}$$

Similar as before

$$p(X_n, Y_n) = \begin{pmatrix} p(A_1, B_1) & 0 & \cdots & 0 \\ 0 & p(A_2, B_2) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & p(A_n, B_n) \end{pmatrix}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

How to choose A_i and B_i ?

Let X and Y be free random variables. Let t and s be the size of the largest atom of X and Y, respectively, i.e.,

 $t = \max\{\mu_X(\{a\}) \mid a \in \mathbb{R}\}$ and $s = \max\{\mu_Y(\{b\}) \mid b \in \mathbb{R}\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Then

(2) i(XY - YX) has no futher atoms.

Case $t, s \leq 1/2$. Our aim is to show that i(XY - YX) has no atom at 0. We take $X_n, Y_n \in M_{2n}$ and reorder the eigenvalues so that $\lambda_{2i-1} \neq \lambda_{2i}$ and $\rho_{2i-1} \neq \rho_{2i}$ Now, consider the block-diagonal matrices

$$X_n = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_n \end{pmatrix}, \qquad Y_n = \begin{pmatrix} B_1 & & \\ & \ddots & \\ & & B_n \end{pmatrix}$$

with

$$A_{i} = \begin{pmatrix} \lambda_{2i-1} & 0 \\ 0 & \lambda_{2i} \end{pmatrix} \text{ and } B_{i} = \frac{1}{2} \begin{pmatrix} \rho_{2i-1} + \rho_{2i} & \rho_{2i-1} - \rho_{2i} \\ \rho_{2i-1} - \rho_{2i} & \rho_{2i-1} + \rho_{2i} \end{pmatrix}.$$

So

$$[X_n, Y_n] = \begin{pmatrix} [A_1, B_1] & & \\ & \ddots & \\ & & [A_n, B_n] \end{pmatrix}$$

and it is enough to prove that $[A_i, B_i]$ is invertible. But

$$[A_i, B_i] = \frac{1}{2} \begin{pmatrix} 0 & (\lambda_{2i} - \lambda_{2i-1})(\rho_{2i} - \rho_{2i-1}) \\ -(\lambda_{2i} - \lambda_{2i-1})(\rho_{2i} - \rho_{2i-1}) & 0 \end{pmatrix}.$$

whose determinant is $(\lambda_{2i} - \lambda_{2i-1})^2 (\rho_{2i} - \rho_{2i-1})^2 \neq 0$, $\alpha \in \mathbb{R}$ is the set of $\beta \in \mathbb{R}$.

Let X and Y be free random variables and let Z = XY + YX. i)The size of the atom at 0 of Z is given by

 $I := \max\{2t - 1, 2s - 1, s + u - 1, t + r - 1, 0\},\$

where

t is the size of the atom at 0 of X;

s is the size of the atom at 0 of Y;

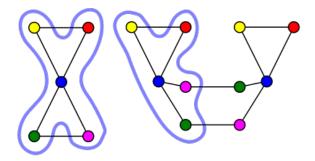
u is the size of the largest atom outside of 0 of X;

I r is the size of the largest atom outside of 0 of Y.

ii) For any $a \neq 0$, Z has an atom at a if and only if there exist weights s(a) and t(a) such that t(a) + s(a) - 1 > 0, X has an atom at λ of size s(a) and Y has an atom at ρ of size t(a) and $2\lambda\rho = a$. The size of the atom of Z at $a \neq 0$ is given by $\max\{s(a) + t(a) - 1, 0\}$. An Application: Spectrum of Universal Covering of Graphs

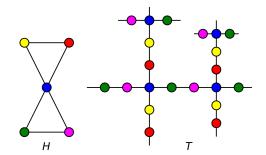
Spectrum of Universal Covering of Graphs

- Let G = (V, E) be a finite graph.
- A covering graph of G is a graph H = (W, F) such that there is a function $f : W \to V$ which is a local isomorfism
- Local isomorfism the neighborhood of v (v y sus vecinos junto con las conexiones que van a v) in H is sent bijectively to the neighborhood of f(v) en G.



・ロト ・回ト ・ヨト ・ヨト … ヨ

Universal Covering of Graphs



イロン イロン イヨン イヨン

2

- We want to relate the spectrum of G to that of T(G).
- For G we take the eigenvalues of A(G).
- For T(G) we consider the *density of states*, μ_{T(G)}: For each v we choose a preimage of v, which we call f⁻¹(v). Then

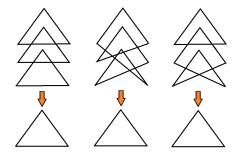
$$\mu_{T(G)} = \sum_{v \in V} \mu_{f^{-1}(v)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Theorem (Banks, Garza-Vargas, Mukherjee 2020)

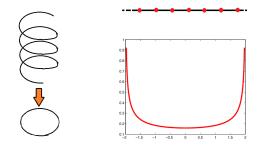
The point spectrum of T(G) is contained in the set of eigenvalues of A(G).

For each k, let $P_k(G)$ be a random covering of size k of G, and let μ_k be its average eigenvalue distribution. Then $\mu_k \to \mu_{T(G)}$



・ 同 ト ・ ヨ ト ・ ヨ ト

For each k, let $P_k(G)$ be a random covering of size k of G, and let μ_k be its average eigenvalue distribution. Then $\mu_k \to \mu_{T(G)}$



(4)

э

For each k, let $P_k(G)$ be a random covering of size k of G, and let μ_k be its average eigenvalue distribution. Then $\mu_k \to \mu_{T(G)}$

We can make a k- random covering changing each 1 in A_{ij} of G by a random permutation f size k and its inverse in A_{ij} .

$$A(G) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & P_{\sigma_1} & P_{\sigma_2} \\ P_{\sigma_1}^{-1} & 0 & P_{\sigma_3} \\ P_{\sigma_2}^{-1} & P_{\sigma_3}^{-1} & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Asymptotic freeness: $P_{\sigma_1} \rightarrow u_i$. u_i are free Haar unitaries.

(Bordenave, Collins 2019) If G has adjacency matrix $A = (A_{i,j})_{i,j}$ y $\{u_{i,j}\}_{0 \le i,j \le n}$ is a family of Haar unitaries such that $u_{i,j} = u_{j,i}^{-1}$ and $\{u_{i,j}\}_{i>j}$ are free. Let U(A), be defined by

 $U(A)_{i,j}=A_{i,j}u_{i,j}.$

The density of states T(G) coincides with the distribution of U(G).

$$A(G) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & u_1 & u_2 \\ u_1^{-1} & 0 & u_3 \\ u_2^{-1} & u_3^{-1} & 0 \end{pmatrix}$$

イロト イポト イヨト ・ ヨ

(Bordenave, Collins 2019) The density of states T(G) coincides with the distribution of U(G).

Theorem (Banks, Garza-Vargas, Mukherjee 2020)

The pint spectrum of T(G) is contained in the spectrum of A(G). Moreover, if $\lambda \in \mathbb{R}$, $\mu_{T(G)}(\lambda) \leq \mu_{A(G)}(\lambda)$.

Theorem (A. Cebron, Yin, Speicher 2021)

Let $Y = (Y_1, ..., Y_d)$ be operatores and let $X = (X_1, ..., X_d)$ be a a fmily of free X_i such that

$$\mu_{X_k}^p \leq \mu_{Y_k}^p.$$

If $A \in M_n(\mathbb{C} \langle x_1, \dots, x_d \rangle)$, then $\mu_{A(Y)}(\lambda) \le \mu_{A(X)}(\lambda)$.

Thanks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●