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The question of this talk: atoms in polynomials in free variables

Atom: λ such that µ(λ) > 0
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Motivation

Let An and Bn be selfadjoint matrices with eigenvalues λ1, . . . , λn y
ρ1, . . . , ρn.

What is the nullity (dim(ker)) P(An, Bn)?

With more information than the spectrum we cannot answer the question
exactly . However we can say something about the next two related
questions:

1 What is the minimum nullity (over all matrices An and Bn) of
P(An, Bn)?

2 ¿What is the nullity P(An, Bn) if An are Bn randomly rotated?

Obvious observation : By shifting P(An, Bn) − λ we can consider the
size of the subespace asociado to λ.
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Problem

{An} and {Bn} two sequences of self-adjoint matrices
(deterministic) matrices with limit in distribution, µ and ν.

Un a unitary random matrix (with Haar measure on U(n) ).

P a non commutative polynomial.

Let µP be the limit distribution of P(An, UnBnU∗
n ).

¿Can we determine the atomic part of µP ?

That is, for each λ ∈ R. ¿What is µP{λ}?
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In terms of free probability

Let X1, X2, · · · Xn be free random variables.

¿For a given polynomial, we can determine the atoms
ofP(X1, ..., Xd) ?

From which information of Xi can we obtain the atoms of P(X1, ..., Xd)?
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i(XY − YX ) = i(D1UD2U − UD2UD1)
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Anticommutator XY + YX = D1UD2U + UD2UD1
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Previous results

If Xi have no atoms, then also P(X1, ..., Xd) no atoms.
(Mai-Speicher-Weber 15, Charlesworth-Shlyakhtenko 15) .

Exact solution for X1 + X2 (Bercovici-Voiculescu 98) and X1X2
Belinschi (2003).

If the atoms Xi all have rational sizes, also the ones of P(X1, ...Xd)
Shlyaktenko-Skoufranis (2015).
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Our main theorem: Minimality of the free case

Theorem

Let X1, . . . , Xd and Y1, . . . , Yd be normal variables in a tracial
W ∗-probability spaces with X1, . . . , Xd being ∗-free and such that, for all
k = 1, . . . , d and each λ ∈ C, we have

µXi ({λ}) = µYi ({λ}).

Then, for each selfadjoint polynomial P in d non-commuting variables in
d non-commuting variables,

µP(X)({λ}) ≤ µP(Y )({λ}).

P can be a rational function or matrix.
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Atoms in Free Random Variables

Theorem (A. Cebron, Speicher, Yin, 2021+)
Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) two d-tuples of free random
variables such that, for each 1 ≤ i ≤ d y λ ∈ C, we have

µXi ({λ}) = µYi ({λ}).

Then, for each polynomial P, and each λ ∈ C, we have

µP(X)({λ}) = µP(Y )({λ}).

In other words, the atoms of polynomials in free variables only depend on
the atomic part of each of the variables.
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Comparison with matrices

Let X = (X1, . . . , Xd) be a tuple of ∗-free normal random variables. We
define

Xm := {Y = (Y1, . . . , Yd) ∈ Mm(C)d : µp
Xk

≤ µp
Yk

}

and X :=
∐∞

m=1 Xm.
By our main theorem

µp
P(X) ≤ inf

Y ∈X
µp

P(Y ).

Proposition

Let X = (X1, . . . , Xd) be a tuple of ∗-free normal random variables. Then
for any P ∈ C⟨x1, . . . , xd⟩

µp
P(X) = inf

Y ∈X
µp

P(Y ).

Our aim is to use the above theorem to obtain as much information of
the atoms for the free case as we can from specific choices for Yi ’s.
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Example: Free additive convolution

Theorem (Bervocivi Voiculescu 98)
µ ⊞ ν has an atom at a ∈ R if and only if there exist λ, ρ ∈ R such that
ρ + λ = a and µ(λ) + ν(ρ) > 1. Moreover, if µ(λ) + ν(ρ) > 1, we have
µ ⊞ ν(a) = µ(λ) + ν(ρ) − 1.

Lower bound: Simple and intuitive. Take matrices X , Y ∈ Mn.
If dim(Ker(X − λI)) = m = nt and dim(Ker(Y − ρI)) = l = ns, then

dim(Ker(X + Y − λI − ρI)) ≥ dim(Ker(X − λI) ∩ Ker(Y − ρI))
≥ (m + l − n) = n(t + s − 1)
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Upper bound: Case 1. t + s > 1. Consider the matrices,

Xn =



λ
. . .

λ
λi+1

. . .
λn


, Yn =



ρ1
. . .

ρj
ρ

. . .
ρ


where i = sn ≥ j = n − tn.
Then

Xn+Yn =



λ + ρ1
. . .

λ + ρj
λ + ρ

. . .
λ + ρ

λi+1 + ρ
. . .

λn + ρ
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Example: Free additive convolution

Xn + Yn =

A1 0 0
0 A2 0
0 0 A3


where

A1 =

λ + ρ1
. . .

λ + ρi

 , A2 =

λ + ρ
. . .

λ + ρ

 ,

and

A3 =

λj+1 + ρ
. . .

λn + ρ

 .

We see that the size of the eigenspace associated to a is
dim(A2) = i − j = (s + t − 1)n.
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Example: Free additive convolution

Upper bound: Case 1. t + s < 1.
We claim that we can reorder the eigenvalues in such a way that
λi + ρi ̸= a, for all i . Taking the matrices Xn = diag(λ1, . . . , λn) and
Yn = (ρ1, . . . , ρn), we see that Xn + Yn = diag(λ1 + ρ1, . . . , λn + ρn)
which has no eigenvalue equal to a, as desired.

Proof of claim: We prove this by induction on n. For n = 1 and n = 2,
it is clear. Consider a reordering of {λi , ρi} such λi + ρi ̸= a for i ≤ n − 1
which is possible by induction. Now consider λn + ρn. If λn + ρn ̸= a we
are done. Otherwise, if λn + ρn = a, then let

S = {j ∈ [n − 1] | such that λj = λn or ρj = ρn}.

If |S| = n − 1, by choosing for each j , ρj or λj , together with λn, ρn we
have that sn + tn ≥ n + 1, which yields a contradiction. Finally, if
|S| ≤ n − 2, there exists j such that λj ̸= λn and ρj ̸= ρn. Since
λj + ρn ̸= a and λn + ρj ̸= a, we get the desired reordering.
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(Injective) Polynomials in two variables
Theorem

Let X and Y be free and a ∈ R. Let P satisfy that
for all λ, ρ such that P(λ, ρ) = a then P(λ, ρ̃) ̸= a and P(λ̃, ρ) ̸= a
whenever λ ̸= λ̃ and ρ ̸= ρ̃.
Then P(X , Y ) has an atom at a if and only there are λ and ρ such that
X has an atom at λ of size s and Y has an atom at ρ of size t, such that
r = t + s − 1 > 0 and P(λ, ρ) = a.
Furthermore, if r > 0, and s(a) and t(a) denote the mass of this
(unique) atoms, then the mass at a is given by s(a) + t(a) − 1.
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Unavoidable atoms

Proposition

Let (M, τ) be a tracial W ∗-probability space and consider a tuple
X = (X1, ..., Xd) of selfadjoint operators in M. Suppose that for each i,
µi(λi) ≥ ti for some λi ∈ R and ti ∈ [0, 1]. If t1 + · · · + td > d − 1 then
for any selfadjoint polynomial P ∈ C⟨x1, . . . , xd⟩, the measure µP(X) has
an atom at P(λ) of size at least t1 + · · · + td − (d − 1), where
λ := (λ1, . . . , λd).

Proof

For each i , let pi be such Xpi = λipi for all i ∈ {1, . . . , d} and
τ(pi) = ti .

Then for p := min(p1, . . . , pd), we have P(X )p = P(λ)p.

Finally τ(p) ≥ τ(p1) + · · · + τ(pd) − (d − 1) = t1 + · · · + td + d − 1.
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Injective Polynomials

Definition
Let P ∈ C⟨x1, . . . , xd⟩ be given. For a ∈ R, if P(ρ1, . . . , ρi , . . . , ρd) = a
and

P(ρ1, . . . , ρi , . . . , ρd) ̸= P(ρ1, . . . , ρ̃i , . . . , ρd)

whenever ρi ̸= ρ̃i for any given scalar values ρ1, . . . , ρi−1, ρi+1, . . . , ρd ,
then we say P is injective for a.

Theorem

Let P ∈ C⟨x1, . . . , xd⟩ be injective for a ∈ R and let a = P(λ1, . . . , λd).
Suppose that X1, . . . , Xd are free selfadjoint random variables and
Xi ∼ µi with µi({λi}) = ti . If t1 + . . . + td ≥ d − 1 then the distribution
of P(X1, . . . , Xd) has an atom at a of size exactly t1 + . . . + td − (d − 1).
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Idea of proof for 3 variables.
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Not every polynomial is injective for all atoms

Theorem (Belinschi 2003)
If µ ∈ P(R+) then µ ⊠ ν has an atom at a ∈ R \ {0} if and only if there
exist λ, ρ ∈ R such that ρλ = a and µ(λ) + ν(ρ) > 1. Moreover

If µ(λ) + ν(ρ) > 1, we have µ ⊠ ν(a) = µ(λ) + ν(ρ) − 1.

The atom at 0 is given by µ ⊠ ν{0} = max(µ{0}, ν{0}).

Lower bound follows from directly (next page for general case).
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Unavoidable atoms

Proposition

Let X , Y1, ..., Yd be selfadjoint operators in some tracial W ∗-probability
space (M, τ). Suppose that µX ({0}) ≥ t. Then for any selfadjoint
polynomial P of the form

P(x , y1, ..., yd) =
k∑

i=1
Qi,1(x , y1, ..., yd)xQi,2(x , y1, ..., yd),

the analytic distribution of P(X , Y1, ..., Yd) has an atom at 0 whose size
is at least max(kt − (k − 1), 0).

Proof

rank(P(X , Y1, . . . , Yd)) ≤
k∑

i=1
rank(Qi,1(X , Y1, ..., Yd)XQi,2(X , Y1, ..., Yd))

≤ krank(X ) = k(1 − t),
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µ ⊠ ν{0} ≤ max(µ{0}, ν{0}). We may assume that µ ∼ X 2
n and ν ∼ Yn.

Consider Xn and Yn,

Xn =



λ1
. . .

λm
0

. . .
0


, Yn =



ρ1
. . .

ρl
0

. . .
0


with λi ̸= 0 for 0 ≤ i ≤ m and ρj ̸= 0, for 0 ≤ j ≤ l . Then, if
r = min(l , m), we have

XnYnXn =



λ1ρ1λ1
. . .

λr ρr λr
0

. . .
0


.

The result follows since Null(XnYnXn) = max{Null(Xn), Null(Xn)}.
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Commutative Matrices: Further consequences

Theorem

Let X1 . . . , Xd , be free. The possible atoms of P(X1, ..., Xd) are
contained in the set

{P(ρ1, ..., ρd) | ρi is atom of Xi , ∀i = 1, . . . , d}.

Furthermore, if X1, . . . , Xd ∈ Mn(C) and λ ∈ R, then
µP(X1,...,Xd )({λ}) ≤ k(λ)/n, where

k(λ) := min
σ1,...,σd ∈Sn

|{j ∈ {1, ...n} : p(λ(1)
σ1(j), ..., λ

(d)
σd (j)) = λ}|,

where, for i = 1, . . . , d , {λ
(i)
j }n

j=1 denotes the eigenvalues of Xi .

Example: i(XY − YX ) can only have atoms at 0. We’ll see k(0) is not
an optimal bound.
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2x2 matrices

Now we consider Xn, Yn ∈ M2n(C) matrices consisting of diagonal blocks
of size 2 × 2, A1, . . . , An and B1, . . . , Bn on their diagonals, respectively.

Xn =


A1 0 · · · 0
0 A2 · · · 0
...

...
...

0 0 · · · An

 , Yn =


B1 0 · · · 0
0 B2 · · · 0
...

...
...

0 0 · · · Bn

 .

Similar as before

p(Xn, Yn) =


p(A1, B1) 0 · · · 0

0 p(A2, B2) · · · 0
...

...
...

0 0 · · · p(An, Bn)

 .

How to choose Ai and Bi?
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Example: Commutator

Theorem
Let X and Y be free random variables. Let t and s be the size of the
largest atom of X and Y , respectively, i.e.,

t = max{µX ({a}) | a ∈ R} and s = max{µY ({b}) | b ∈ R}.

Then

1 i(XY − YX ) has an atom at 0 of size given by
max(2t − 1, 2s − 1, 0).

2 i(XY − YX ) has no futher atoms.
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Case t, s ≤ 1/2. Our aim is to show that i(XY − YX) has no atom at 0. We
take Xn, Yn ∈ M2n and reorder the eigenvalues so that λ2i−1 ̸= λ2i and
ρ2i−1 ̸= ρ2i
Now, consider the block-diagonal matrices

Xn =

A1
. . .

An

 , Yn =

B1
. . .

Bn


with

Ai =
(

λ2i−1 0
0 λ2i

)
and Bi = 1

2

(
ρ2i−1 + ρ2i ρ2i−1 − ρ2i
ρ2i−1 − ρ2i ρ2i−1 + ρ2i

)
.

So

[Xn, Yn] =

[A1, B1]
. . .

[An, Bn]


and it is enough to prove that [Ai , Bi ] is invertible. But

[Ai , Bi ] = 1
2

(
0 (λ2i − λ2i−1)(ρ2i − ρ2i−1)

−(λ2i − λ2i−1)(ρ2i − ρ2i−1) 0

)
.

whose determinant is (λ2i − λ2i−1)2(ρ2i − ρ2i−1)2 ̸= 0.
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Anticommutator
Theorem

Let X and Y be free random variables and let Z = XY + YX.
i)The size of the atom at 0 of Z is given by

l := max{2t − 1, 2s − 1, s + u − 1, t + r − 1, 0},

where

1 t is the size of the atom at 0 of X;

2 s is the size of the atom at 0 of Y ;

3 u is the size of the largest atom outside of 0 of X;

4 r is the size of the largest atom outside of 0 of Y .

ii) For any a ̸= 0, Z has an atom at a if and only if there exist weights
s(a) and t(a) such that t(a) + s(a) − 1 > 0, X has an atom at λ of size
s(a) and Y has an atom at ρ of size t(a) and 2λρ = a.
The size of the atom of Z at a ̸= 0 is given by max{s(a) + t(a) − 1, 0}.
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An Application: Spectrum of Universal Covering of Graphs
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Spectrum of Universal Covering of Graphs

Let G = (V , E ) be a finite graph.

A covering graph of G is a graph H = (W , F ) such that there is a
function f : W → V which is a local isomorfism

Local isomorfism the neighborhood of v (v y sus vecinos junto
con las conexiones que van a v) in H is sent bijectively to the
neighborhood of f (v) en G .
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Universal Covering of Graphs
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Spectrum

We want to relate the spectrum of G to that of T (G).

For G we take the eigenvalues of A(G).

For T (G) we consider the density of states , µT (G): For each v we
choose a preimage of v , which we call f −1(v). Then

µT (G) =
∑
v∈V

µf −1(v)

Theorem (Banks, Garza-Vargas, Mukherjee 2020)
The point spectrum of T (G)is contained in the set of eigenvalues of
A(G).
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Why free Probability?

Theorem
For each k, let Pk(G) be a random covering of size k of G, and let µk be
its average eigenvalue distribution. Then µk → µT (G)
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Why free Probability?

Theorem
For each k, let Pk(G) be a random covering of size k of G, and let µk be
its average eigenvalue distribution. Then µk → µT (G)

We can make a k- random covering changing each 1 in Aij of G by a
random permutationof size k and its inverse in Aji .

A(G) =

 0 1 1
1 0 1
1 1 0

 →

 0 Pσ1 Pσ2

P−1
σ1

0 Pσ3

P−1
σ2

P−1
σ3

0


Asymptotic freeness: Pσ1 → ui . ui are free Haar unitaries.
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Why free Probability?

Theorem
(Bordenave, Collins 2019) If G has adjacency matrix A = (Ai,j)i,j y
{ui,j}0≤i,j≤nis a family of Haar unitaries such that ui,j = u−1

j,i and
{ui,j}i>j are free. Let U(A), be defined by

U(A)i,j = Ai,jui,j .

The density of states T (G) coincides with the distribution of U(G).

A(G) =

 0 1 1
1 0 1
1 1 0

 →

 0 u1 u2
u−1

1 0 u3
u−1

2 u−1
3 0
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¿ Why free Probability?

Theorem
(Bordenave, Collins 2019) The density of states T (G) coincides with the
distribution of U(G).

Theorem (Banks, Garza-Vargas, Mukherjee 2020)
The pint spectrum of T (G) is contained in the spectrum of A(G).
Moreover, if λ ∈ R, µT (G)(λ) ≤ µA(G)(λ).

Theorem (A. Cebron, Yin, Speicher 2021)
Let Y = (Y1, . . . , Yd) be operatores and let X = (X1, . . . , Xd) be a a
fmily of free Xi such that

µp
Xk

≤ µp
Yk

.

If A ∈ Mn(C ⟨x1, . . . , xd⟩), then µA(Y )(λ) ≤ µA(X)(λ).
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Thanks.
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