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This in an introduction to the theory of non-commutative distributions of non-
commuting operators or random matrices. Starting from the basic problem to find
a good approach to the meaning of “non-commutative distribution” we will, in par-
ticular, cover: free analysis, which is a version of complex analysis for several non-
commuting variables; the operator-valued version of free probability theory (combi-
natorial but also analytic aspects); the linearization trick to reduce non-linear scalar
problems to linear operator-valued problems; the combination of operator-valued
convolution and linearization to calculate the distribution of polynomials in free
variables; the basic theory of non-commutative rational functions.

On one hand, this is a continuation of the Free Probability Lecture Notes. On the
other hand, the theory of free probability is developed again, but in a more general,
operator-valued context. So, in principle and with some additional efforts, it should
be possible to read the present notes without having a prior knowledge on free
probability. Big parts of the material do also not deal so much with free variables,
but more general with analytic and algebraic aspects of maximal non-commuting
variables.

The material here was presented in the summer term 2019 at Saarland University
in 20 lectures of 90 minutes each. The lectures were recorded and can be found
online at https://www.math.uni-sb.de/ag/speicher/web_video/index.html.
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0 Introduction

We are interested in properties, preferably analytic, of distributions py, . x, of
o operators Xji,..., X, on Hilbert spaces (typically from C*-algebras or von
Neumann algebras);
o often those operators are “limits in distribution” of random matrix models;
o typically our operators don’t commute, which makes our distributions “non-
commutative”.

0.1 Classical case

Consider first the classical case of “commutative” distributions. Then random vari-
ables X, ..., X, are measurable functions X;: Q>R (i=1,...,n), where (2,2, P)
is a probability space, i.e., P is a probability measure on the o-algebra 2 over €2,
and the distribution px,, . x, is a probability measure on R", given as push-forward
of P, i.e.,

px, .. . x,(B)=P{weQ|(X1(w),...,Xn(w)) € B}) for any Borel set B of R".

There are various ways of describing or working with this object: px, . x, is
(i) a probability measure on R”;
(ii) a positive linear map, which allows to average over continuous functions of

Xl,...,XnI

E[f(Xl,...,Xn)]:ff(tl,...,tn)duxl,_,,,xn(tl,...,tn)
= [ @) X(@))AP ().
Q

for continuous f : R™ - C; this is the same as (i) via the Riesz respresentation
theorem;
(iii) uniquely determined by its Fourier transform

f‘(tl, o 7tn) = E[efi(t1X1+-..+tan)];



or other nice analytic functions on R™ or C”; e.g., for n = 1, one also has the
Cauchy or Stieltjes transform G(z) = E[(z - X)™!];
(iv) in many cases (e.g., compactly supported case) uniquely determined by its
moments
E[XF.. Xk forall ky,..., k, €Np.

0.2 Non-commutative case

Consider now general (i.e., not necessarily commuting) X7,..., X, € A for a non-
commutative probability space (A, ), where A is a unital algebra and ¢ : A - C a
unital linear functional (usually with some additional analytic structure). Can we
give sense to fix, . x, in this setting?

The only item which makes directly sense is the combinatorial item (iv); and this
will serve as our definition in the non-commutative case: px,, . x, @ the collection
of all moments

o ( Xy Xitry) for all keN; 1<4(1),...,i(k)<n

of our (non-commutative) random variables Xy,..., X,.

Our goal is an analytic understanding of this; i.e., to find non-commutative ver-
sions or replacements for items (i) - (iii). In particular, we would like to to have
notions for and results on

o “smoothness” or “regularity” of non-commutative distributions;

o absence of “atoms”;

o existence of “densities”.

We still don’t know what a “non-commutative probability measure” is, but there has
been quite some progress in recent years on dealing with this via versions of (ii) and
(iii). In particular, we can say quite a bit about the distribution of f(Xj,...,X,)
for big classes of (X1,...,X,,) and big classes of f. In particular, this gives results
on the asymptotic eigenvalue distribution for polynomials in independent random
matrices; or, equivalently, the distribution of polynomials in free variables.

These results rely in particular on progress on

o operator-valued versions of free probability theory of Voiculescu;

o free analysis (aka free non-commutative function theory);

o relating analytic questions about operators in von Neumann algebras with the
theory (of Cohn et al.) of non-commutative linear algebra and the free skew
field (aka non-commutative rational functions).

All of this, and much more, will be covered in the coming chapters.



1 Basic Definitions and Examples

We start with the basic definitions and the most prominent example of a non-
commutative distribution: namely free semicircular variables. They show up as the
sum of creation and annihilation operators on the full Fock space as well as the
limit of our most beloved random matrices, namely independent Gaussian random
matrices.

1.1 Non-commutative distributions and moments

Definition 1.1. (1) A non-commutative probability space (A, ) consists of
o a unital algebra A;
o a unital linear functional ¢ : A - C; unital means (1) = 1.
(2) A C*-probability space is a non-commutative probability space (A, @), where
o A is a unital C*-algebra;
o ¢ is a state, i.e., p(A*A) >0 for all A€ A.

(3) Elements A;,..., A, € (A, p) are called (non-commutative) random variables.
Remark 1.2. By the GNS construction, a C*-probability space can always be written
as:

o Ac B(H), for a Hilbert space H;
o p(A) = (AL, E), for some unit vector £ € H.

Definition 1.3. Let (A, ¢) be a non-commutative probability space and consider
Ay, ..., A, € A, The (non-commutative) distribution pia,.. 4, of Aq,..., A, is given
by the collection of all their joint moments:

KAy, A, < {QO(A“A%)|]€EN, 13@1772kgn}

,,,,,

1.2 The quest for an analytic understanding of
non-commutative distributions

Remark 1.4. We will usually work in a C*-probability space and consider selfadjoint
operators Xi,...,X,. Our main goal is to get a better analytic understanding of



the distribution px, . x,. For n =1 or also for the multivariate classical case (i.e.,
general n, but the X; commute) there is a lot of (commutative) analysis available.

Ezxample 1.5. (1) n = 1: Consider X = X* ¢ A, where (A, ¢) is a C*-probability
space. Then puy can be identified with a probability measure on R (with
compact support) via

go(Xk)=ftdeX(t) for all k ¢ N,
R

This follows by Weierstrafl Approximation Theorem of continuous functions
by polynomials on compact intervals and by Riesz Representation Theorem.
(2) The same applies to the general commutative situation. For a C*-probability
space (A, ¢) and selfadjoint commuting X1, ..., X, € Athe distribution ux, . x,
can be identified with a compactly supported probability measure pu on R” via

()O(X“sz) = ft21t2kdu(t17 Ce ,tn) for all n e N, 1< il, ce ,in <n.
R’I’L

Remark 1.6. (1) Thus, in the the classical case, distributions “are” probability
measures on R” and we can ask questions about their regularity:

o do they have atoms;

o do they have a density (with respect to Lebesgue measure, or - equiva-
lently, but maybe conceptually better - with respect to Gaussian mea-
sure);

o what are the regularity properties of those densities?

(2) There are nice analytic functions which contain all the relevant information
about classical distributions; in particular we have
(i) Fourier transform (aka characteristic function)

F(ty, ... ty) = B[e7XiesinXn)],
(ii) Cauchy transform (in the case n =1)
¢e)= [ —dut) = p(—)
Z) = _— = _—
PR LX)
which is defined and analytic on

C*:={ze¢C|Imz > 0}.

10



(3) If we have a C*-probability space (A, ), why are we not happy with ¢ re-
stricted to the C'*-algebra generated by X; ..., X, as our analytic description?
Actually, don’t we say that C*(X7,...,X,,) is like the continuous functions of
Xi,..., X, and vN(X7, ..., X,,) is like the measurable functions of X1,..., X,;
indeed ...but in these phrases we cannot separate the functions from the op-
erators.

What we really want is to compare random variables Xi,..., X, in (A, ¢)
with random variables Yy,...,Y, in (B,v), for two possibly different non-
commutative probability spaces (A,¢) and (B,). We can only do this by
comparing o(f(X1,...,X,)) with ¥(f(Y1,...,Y,)) for as big classes of f as
possible. Thus, f must make sense as an abstract function which can be
applied to tuples of non-commuting operators.

The same applies to the classical situation. Given classical probability spaces
(Q, P) and (2, P) and random variables X : @ > R and Y : Q - R, we are not
comparing P with P or X and Y directly, but just their distribution, i.e.

[ X @)aPw)  with [ F(V(@)dP@)

for special classses of functions f; like: monomials, continuous, measurable.

1.3 Examples of non-commutative distributions:
full Fock space and random matrices

FExample 1.7. For a Hilbert space H we define the full Fock space by
FH)=PH*=C-QoHoH?® -,

k>0

where € is a unit vector in H®? ~ C, called vacuum.
Elements in F(#) are given by square summable linear combinations of f;®---® fi
(k=0,1,...; f1,..., fr € H) with inner product

(f1®® fr,01®-®g) = ([, 91) - fr, gr)-

For f € H, we define the (left) creation operator I(f), determined by

(Hae=f
(f)fi®e-®fi=f®fi®8 fi

11



Its adjoint is the (left) annihilation operator I*(f), given by

(f)2=0
UF(f)fi®o fr=(fi, ) f20® fi

Let &, ...,&, be an orthonormal system of vectors in H (i.e., & L & for i # j and
|&i] =1 for all 4), then we consider the selfadjoint operators

Sz' = l(fz)‘i‘l*(gl) (1:1,,71)
For ¢ we take
o(A) = (AQ, Q) “vacuum expectation state”.
We are interested in the non-commutative distribution pg, g, of the operators
S1,...,S, in the C*-probability space (B(F(H)),¢). We have a quite good under-
standing of this, namely we know:

o Si,...,8, are free (in the sense of Voiculescu’s free probability theory)
o and each S; has a semicircular distribution

dus, (t) = %\/ 4-t2dt  on [-2,2],

3 =

ie.,

+2
1 0, k odd
@(Sf)=§ftk\/4—t2dt={ Lok ©
-2

m(k/z), k even.

The non-zero moments are the Catalan numbers.

77777 s, , the non-commutative distribution of free semicircular variables, is our
benchmark; other distributions will be compared to this. In particular, the notion
of a density (if there is any!) should be with regard to this.

12



Fxample 1.8. Many important distributions are given as limits of random matrices.
Let P(xy,...,x,) be a non-commutative selfadjoint polynomial in n non-commuting
variables. For example, for n = 2,

P(xy,15) = 2% + 22 or P(xy,25) = 2] + 21252, + 5.

We consider on the space of n-tuples (X I(N), . ,quN)) of selfadjoint N x N matrices
the probability measure py given by

dpy (X XY = ey eV HIPOY XD (XY an(x (M),

where cy is a normalization constant such that py is a probability measure, tr
denotes the normalized trace on matrices and

N
AANXM) =TTdRez;) ] d(Rex;)d(Imaz;;)
i=1 1<i<j<N
is the Lebesgue measure on all entries of the selfadjoint matrix X ) = (xl-j)f?’jzl
which are not constrained by the selfadjointness condition. Then we consider on
selfadjoint V x N matrices a state ¢y given by, for ke N and 1 <4y,...,7;, < n,

i1 ik

on (XM Xy o f e[ XM X (X, x )
and denote by px, . x, the limit of this distribution, given by the moments
P (X XG,) 1= lim <PN(X1'(1N)"‘X¢(,5V))7

provided these limits exist. The latter depends on P and is, for n > 2, a big open
question. Only some simple situations are will understood. E.g., for P(xy,...,z,) =
x? + - + 22, corresponding to independent Gaussian random matrices (GUE), this
limit exists and is, by results of Voiculescu, equal to the one from Example 1.7, given
by free semicirculars.

To summarize, we are interested in the limit of multi-matrix models and want to

understand whether such limits exist and, in particular, how to describe them.

The assignments address some more details about free semicirculars, in the context
of the full Fock space (Exercise 1) and as the limit of random matrices (Exercise 2).

13



1.4 Non-commutative polynomials and

distributions

Definition 1.9. (1) We denote by C(xy,...,x,) the polynomials in n non-com-

muting indeterminates x1, ..., x,; i.e., the unital algebra in n algebraically free
non-commuting generators xi,...,r,. Thus, a linear basis of C(xy,...,x,) is
given by all monomials x;,---x;, (k € No; 1 <dy,...,4; <n; k=0 corresponds
to the constant polynomial 1), and multiplication of two such monomials is
done by justaposition. A general polynomial p = p(z1,...,z,) € C{xy,...,z,)
is thus of the form

d n
p(xy, ..., x,) =g+ Z Z iy i iy Ty (1.1)
k=11, ip=1
for d € No, ap, i, i, € C. We can make C(z1, ..., x,) to a *-algebra by declar-
ing f =x; foralli=1,...,n.

If (A, ¢) is a C*-probability space and X; = X € A (i = 1,...,n), then we
have the evaluation map

Clxy,...,z,) > A
p(xy, .. xn) = (X, ..., X)),

which is the *-homomorphism given by 1+~ 1 and z; » X; (i =1,...,n). More
explicitly, for a non-commutative polynomial p(zy,...,z,) of the form (1.1)
we have
d n
p(Xl,...,Xn) = Qg+ Z Z ail,...,ikXil"'Xik- (12)
fe=1 i1, ig=1

We denote by C(X3,...,X,) c A the image of this map, i.e., the unital *-
subalgebra of A, which is generated by Xi,...,X,,.

We define now, more precisely as in Definition 1.3, the (non-commutative)
distribution jix, . x, as the linear functional

pxy . x,  Clay,. .. ,x,) > C
p(x1,. . x0) > p(p(Xq, ..., X0)).

Remark 1.10. (1) With C[xy,...,z,] we denote, as usual, the ring of polynomials

14

in n commuting variables.



(2) We might also need at some point the non-selfadjoint versions of Definition 1.9;
i.e., if (A, ) is just a non-commutative probability space the we do not put a
s-structure on C(z1, ..., x,); or, if we deal with general, not necessarily selfad-
joint, Ay, ..., A, in a C*-probability space, we have the *-polynomials in n non-
commuting non-selfadjoint indeterminates 21, ..., 2,, C{z1,..., 20, 27,..., 2%).

1.5 Generalizations of non-commutative
distributions

Remark 1.11. There appeared recently some generalizations of non-commutative

distributions in the context of free probability, like:

(i) Bi-distribution or pairs of faces (Voiculescu 2014 [Voil4]). There the random
variables are divided into two classes, some random variables are declared as
right variables, others as left variables.

(ii) Trace polynomial distributions (Cebron 2013 [Ceb]). There C(xy,...,x,), the

polynomials in 1, . .., z, with “constant” coefficients, is replaced by C{x1, ..., x,},
the polynomials in x,...,x, with coefficients depending on “(tracial) mo-
ments” of xq,...,x,.

(iii) Traffic distribution (Male 2011 [Mal]). Moments can be identified with cyclic
graphs (for the case when ¢ is a trace); for example,

1 & 1).02.6
o(TVT,T5) = N > tz(j)t;k)tl(ci)

t,5,k=1

corresponds to

More general graphs, like

i

15



correspond then to more general “graph-moments”

N
(1) 4(2) 1(3) 1(4) 4(5) 4(6) L(T) 1(8) 4(9) ,(10),(11),(12)
Z ti1i2 tigi2 ti3i4ti4i4ti5i3 ti2i5 tieistieais tiaie tiﬂs ti8i7 ti8i7
i1,ig=1
For those generalizations, a general analytic theory is even more unclear than for
the ordinary non-commutative distributions, and we will not address those general-
izations in the following.

16



2 Operator-Valued Distributions
and Operator-Valued Cauchy
Transform

Our main analytic object for dealing with non-commutative distributions will be a
version of the Cauchy transform. However, this can only be defined easily for one op-
erator, but in a more general, operator-valued setting. Since the information about
the non-commutative distribution of a non-commutative tuple can be rewritten in
terms of one operator-valued operator this opens the door to the analytic world of
non-commutative distributions.

2.1 Going from several non-commuting operators
to one operator-valued operator

Definition 2.1. Let (A, p) be a C*-probability space and X = X* € A. The function
Gx:C" - C; zHgo(L)zfiduX(t) (2.1)
’ 2=X7 )zt
is called Cauchy transform of X (or of ux).

Remark 2.2. A Cauchy transform Gy has the following properties.
(i) Gx is analytic on C*;
(ii) Gx has a power series expansion about oo:

Gx()= 32X for 2> X
k=0

(iii) we have

17



(iv) px can be recovered from Gy by the Stieltjes inversion formula
1
dux (t) = —lim — Im Gx (t + i) dt;
eNo0 71

one should note that ¢t —» —Im Gx (¢ +ie) /7 is, for each € > 0, the density of a
probability measure.

Motivation 2.3. Let (C, ) be a C*-probability space and consider selfadjoint X7, ...,
X, € C. We would like to encode the information about py, . x, in an analytic
function, something like

Z Z lezlkgp(X’Llek) (2'2)
e=0i1,..ig=1
Since the X; do not commute in general, the variables zi,...,z, should also not

commute. Thus we need something like an analytic function in non-commuting
variables. It is not clear how to give (2.2) a good analytic meaning (in particular, if
we want this in some non-commutative half-planes for z1, ..., z,).

Instead, we will rewrite the above in terms of one variable X, but in an operator-
valued setting. For this we put

My (C) == M, (C) ® C = {(Aij)ij=1 | AijeC}
and
idep: Mn(c) - Mn((c); (Aij)ijl = (SO(Aij))Zj:l-

Denoting
A:=M,(C), B:= M,(C), E:=idey: A- B,

we have now an operator-valued probability space, where, compared to Definition
1.1, C is replaced by a (non-commutative) subalgebra B of A and ¢ is replaced by
a conditional expectation E onto B. In this setting we put

X, 0 - 0
X = 0 ).(2 O e A
0 0 - X,
All moments of X,..., X, with respect to ¢ can then be recovered from the B-

valued moments E[bgX by X---by_1 Xbi] (bo,...,br € B) of X. For example, p(X;X5)
can be recovered from

(G 26 2600

18



as

0 0

10 0 1 0 0
oo ) o) e (0)

2.2 The operator-valued setting

(SO(XlXQ) 0) = E[by X b1 Xbs]

with

Definition 2.4. (1) An operator-valued (non-commutative) probability space (A, B, E)
consists of

o a unital algebra A;

o a unital subalgebra 1€ B c A;

o a conditonal expectation £ : A — B, i.e.,
- FE is linear;
- E(1) =1,
- F has the bimodule property:

E[blAbQ] = blE[A]bQ for all bl,bg € B, Ace A,

thus also in particular: E[b] =b for all b€ B.

(2) If A and B are unital C*-algebras and E is positive (i.e., for all A € A there
is b € B such that E[A*A] = b*b), then (A, B, E) is an operator-valued C*-
probability space.

(3) Elements X € A are called operator-valued (or B-valued) random variables.

(4) The operator-valued moments of X are of the form

E[X], E(XbX], E[XbXbX], ... E[XbXby Xb1X],

(5) The collection of all operator-valued moments constitutes the operator-valued
distribution px of X.

Definition 2.5. Let (A, B, E') be an operator-valued C*-probability space and X =
X* e A. Then we define the operator-valued Cauchy transform Gy : B - B (actually
not everywhere defined, nice domain will be specified later) by

Gx(b)=E[(b-X)] (if b - X is invertible).

Remark 2.6. (1) Gx is an analytic function between the Banach spaces B — B in
Gateaux or Frechet sense; more on this later.

19



(2) Formally, Gx has a power series expansion: for [b71| < 1/| X | we have
(b= X)™t = (b[1- b1 X])!
B NCREUR

k>0

=+ b X b XOT XX

and thus
Gx(b) =Y E[(b'X)"b"].
k>0
(3) As we see from the power series expansion, Gy does not contain informa-
tion about all moments, but only about symmetric moments of the form
E[XbXbXb---bX]. In order to get all moments we have to consider matri-
cial extensions (amplifications) Gg(m) of Gx. For each m € N, we amplify our
setting to
(M,,(A), E ®id, M,,(B))

and consider there the Cauchy transform of

xot1-[V 7 e, ),

i.e., for Gg(m) : My (B) » M, (B) with b= (b))%, we have

-1

b11 -X b12 blm
GO =Eeid[(b-Xel) '] = Eeid|[ "2 P2t X o b
bml me bmm - X

(4) Note that unsymmetric moments on base level m = 1 can be recovered from
symmetric moments on higher levels, similar as in 2.3. For example, E[ Xb; X by X |
can be recovered from a symmetric moment for m = 3 as follows. For

0 b 0 X 0 0
b=10 0 b|, Xeol=[0 X 0
00 0 0 0 X

20



we have
E[Xleng])

00
E®id[X®1-b-X®1-b-X®1](O 0 0
0 0 0

(5) Thus, in order to encode all operator-valued moments of X in some analytic
function, we do not just need Gx = GS), but also all its matrix amplifications

Gg(m). Those Gg(m) are related to each other for different m as follows:
(i) For invertible by € M,,, (B) and by € M,,,(B) we have

mi+ma bl 0 _ . (bl—X®1)71 0
Cx (o bg)‘E@”d[( 0 (by- X @ 1)1

_(Gx() 0 )
_( 0 G?"’(bz))’

(ii) for invertible S € M,,(C) and b € M,,(B) we have (note that we have
S-Xel-S1=Xel)

GU(SbS™) = E®id[(ShS' - X ®1)7']
=E®id[(SbS™'-S-Xe1-5S1H)™]
=E®id[S(b-X®1)'S!]
=S-Eeid[(b-X®1)'] -5
=5-GUM(b)- 57

(6) Collections of functions which satisfy (i) and (ii) are called fully matricial func-

tions (by Voiculescu [Voi04]) or (free) non-commutative functions (by Vinnikov
et al. [KVV]). We will have to have a closer look on them in the next chapter.
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3 Non-Commutative Functions

We will now formalize the algebraic properties of the G&m); but ignore first the
question of domain. The main point will be to see that “analyticity” can be encoded
in algebraic properties over matrices. Later, in Section 3.2 we will also address the
question of the domain. A good source for the material in this and the next chapter
are the expository notes Operator-valued non-commutative probability by David

Jekel [Jekl1§].

3.1 How to encode analyticity in algebraic
properties

Definition 3.1. Let B be a unital algebra. A collection f = (f,)men of functions
Jm Mm(B) e Mm(B)
= fm(z)

is called a non-commutative function (or fully matricial function), if it satisfies the
following two conditions.
(i) f respects direct sums:

el Y )

for all my,mq €N, 21 € M,,,,(B), 22 € M,,,(B).
(ii) f respects similarities:
fn(S2S5™) =S5f,.(2)S™ (3.2)
for all m e N, z € M,,(B), S € M,,(C) invertible.
Remark 3.2. (1) It is fairly easy to see (and you are asked in Exercise 4 to see
this) that (i) and (ii) are equivalent to the fact that f respects intertwinings:
for all n,m e N, z; € M,,(B), 22 € M,,(B), and an n x m matrix T € M, ,,,(C)

we have
ZlT = TZQ — fn(zl)T = Tfm(ZQ)
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(2) Usually, our interesting functions (like G) are not defined on all of M, (B), but
only on subsets. The conditions above have then to be modified accordingly.
We will ignore this for the moment, but come back to this issue later.

(3) We will often just write f(z) instead of f,,(2), when the m is clear.

(4) We claim now that (i) and (ii) encode analyticity in an algebraic way. In
particular, they should allow us to distinguish analytic functions like

f(z)=2  forall ze M, (B)
from non-analytic ones, like
g(z)=2" for all z € M,,(B).

Note that (i) does not see a difference here,
2z 0 z 0 g(z1) 0
g = « | = )
0 2o 0 =z 0 g(29)

F(S2871) = S2871 = Sf(2)S7,

but (ii) does:

but

g(SzS8™) = (82871 = §*12*S* 4 Sg(2)S™!
in general for S € M,,(C) with m > 2. Note that (ii) is for m = 1 always
trivially satisfied, since then S € C.

Example 3.3. Consider the case B = C; i.e., let f; : C - C be an analytic function.
Then one can extend this by holomorphic functional calculus to matrices via

fm : My (C) > M, (C)
2o ()= o [ 18

-2

where we integrate around the eigenvalues of the matrix z. The collection f =
(fin)men satisfies then (i) and (ii):

f(f; 202)=§F[f1(5)(£‘021 5_02,2) ¢
_ ! (§-2)" 0
_%Jfl(g)( 0 (g_ZQ)—l)df

_ (f(gl) f((;))
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and

—1_1 _ 9,9 1)1 _L _ ) lg-lge - )51
f(8257) = — j O~ 5=57) e = — [ AOS(E=2) 57 = ()57

We can in this case also recover the derivative f| from the action of the higher f,,,
without taking limits. For this consider z;, z5,w € C, then

f(0 “’)% [ f(&)(f‘ozl 5‘_“;2) de
(€-21)" (E-21) w(E-2)"
27rz./f(£)( (§—22)7! )

_ (fl(Zl) * )
0 fl(Zz)

with
o= [ FOE-2)" (=) de
T
1 1 1 1
—wrff(f)zl_z2 [5—2‘1 _g—ZQ]dé
Z1 — %9
and thus

2w\ _(fi(z) fi(z)w)
f2
0 2 0 fi(2)
Remark 3.4. In the same way, derivatives can be recovered for non-commutative
functions, just relying on properties (i) and (ii) (and some continuity or boundedness

condition). We address this in the following. For this one should note that upper
triangular matrices are similar to diagonal matrices:

G606 26 7)

—— —_—
S S-1
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Lemma 3.5. Let f be a non-commutative function. Then we have for z, € M,(B),

29 € My, (B), we M, ,(B):
21wy _ fn(z) *
(5 2)-757 i)

We denote the entry in * by 0f(z1,22) fw or by Af(z1,22)[w]. Note that this is
an element in M, ,,(B).

Proof. Write

Note that we have then by (3.1)

z7 w 0 1w a
f((]1 29 ())(f(()1 zz) 0 )(c
0 0 =z 0 f(z1) 0

Furthermore, we have

z17 w O 1 0 -1\({z7 w O 1 01
0 2 0)]=10 1 O 0 2 010 1 O
0 0 = 0 0 1 0 0 z/\0 0 1
—_— —_———
S 5-1
and thus by (3.2)
a b 0 z1 w 0 1 0 -1 z17 w 0 1 01
cd 0 |=flo 2z ol=lo1 ol-flo =» o]-]o 1
00 f(z) 00 zn/ \oo 1) \o 0 %) \oo1
1 0 -1 a b 0 1 01
= 1 0 c d 0 | 1
00 1) \oo fz)) \o o 1/
b a-f(z)
=|lc d c .
00 f(a1)
This implies that a = f(z1) and ¢ = 0. Similarly, one gets that d = f(z1). O
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Lemma 3.6. 0f(z1,22) fw is linear in w.

Proof. We have to show that
(i) for all A e C and w € M, ,,(B):

af('zlaZ?) H()\IU) =A- 8f(2’1,2’2) Hw;
(ii) for all wy,wq € My, (B):
8f(z1, 22) |j(w1 + U)Q) = af(Zl, 22) ﬁwl + (9f(21, 2’2) ﬂwg.

We only show (i); the second part is similar, see Exercise 5.
(i) The case A = 0 is clear, since 0f(z1,22) §0 = 0. Thus assume that X\ # 0. We

G006 908 )

and thus
(f<zl> af(zl,zauuw)):(x o) (f<zl> f(zl,za)uw)(m o)
0 f(z2) 0 1 0 f(z) 0 1
:(f(21) A'f(zhzz)liw)
0 f(22) '

]

Proposition 3.7. (1) 0f(z1,22) is a difference operator, i.e., we have for all m €
N and all z1, z3 € M,,,(B)

f(z1) = f(22) = 0f (21, 22) (22 — 21).
(2) If f is continuous, then, for all m € N and all z € M,,(B), 0f(z,2) is a

differential operator, i.e.,

[z +ew) - ()

3

8f(z,z)ﬂw:l€i£18

Proof. (1) Put Sz((l) 1);then
21 R2— 1) _ Z1 0 -1
(b 2) 6 o)
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and thus

(f(zl) Of (21, 22) §(22 —21)) _ S(f(zl) 0 )5_1

0 2 0 f(=)
_ (f(zo f(z2) —f(zl))
0 f(22) '

By Lemma 3.6 and by part (1), we have
c-0f (2,2 +w) g = 0f (5 +2w) few) = (= +ew) - f(2),
This yields
0 (22 +ew)juw=—[f (2 +ew) - (2))
and thus

f(z w ):(f(Z) %[f(zww)—f(Z)])'

0 z+ew 0 f(z+ew)

As f is assumed to be continuous, the left hand side of this converges for £ \ 0

f z w)_(f(z) 0f(z2)fw
0 =z 0 f(2)
This implies then that also the right hand side of the above equation converges
and we must have

3f(z,z)uw:limé[f(zvtsw)—f(z)].

eNo0

[]

Definition 3.8. Let (E,| - |g) and (F,| - |z) be complex Banach spaces and let
@ # Q) c E be open. A function f:Q — F is called

(i)

(i)
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Gateau holomorphic on €2, if

lim ~(/(a+ 2h) = £(2)] = 6 (ai )
2\ 0} 7
exists in (F, | -|r) for all z € Q and all h e E;

analytic on €2, if it is Gateau holomorphic and locally bounded, i.e., for all
x € Q) there exists 7 = r(x) > 0 such that

sup || f(y) | < oo.
yel)
ly-z|g<r



Remark 3.9. (1) By a theorem of Hille (1944) one knows that an analytic function
is actually also Fréchet holomorphic, i.e., the “total derivative” § f(x;-) : E — F
is a bounded linear operator and

| f(z+h) = f(x)=of(x;h)]r=0.

nhnE -0 ||h||E

Moreover, f has locally a uniformly convergent “Taylor series expansion”.

(2) In Proposition 3.7 we have seen how to get Gateau holomorphic from the
algebraic conditions on our non-commutative functions, under the condition
of continuity. According to Definition 3.8 and the first part of this remark
local boundedness is a more natural condition to ask for. It turns out that
this is actually sufficient to ensure continuity (and thus analyticity) for our
non-commutative functions.

Proposition 3.10. Let f = (fin)men, fm @ Mpm(B) = M,,(B), be a non-commutative
function. If f is locally bounded (i.e., each f,, is locally bounded), then f is contin-
uous (i.e., each f,, is continuous). [To be precise: Boundedness and continuity is
here with respect to the C*-norm on each M,,(B).]

Proof. We know, by 3.7, that for 21, 29 € M,,(B)

f(21 22—21) (f(zl) f(z) - f(Z1))
O Z9 0 (22) ,

and, since 0f(z1,22) fw is linear in w (by Lemma 3.6), also for A e C

Now take z € M,,(B) and £ > 0; we want to find 0 > 0 such that w € M,,(B) and

|w - z| < implies that || f(w) - f(2)|| <e.
For this we go to Ms,,(B) and consider there

EB__z()
2@z=|,

Since fa,, is locally bounded we find r > 0 such that sup | f(y)|| =2 C < oo, where
the supremum is over y € My, (B) such that |y -z @ z| <.
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Now we choose 0 := min{3,e5z} and consider w € M,,(B) with |w - z| <¢é. Then we

have
(w g(w—z))_(z 0)
0 z 0 =z

- Clw—
o (| I e Y

0 N S e———
<6<g <WO<Eg
and thus, by also using (3.3),
flw) @) =fEON| | (v Sw-2)
5 S ON s 7))
This implies then |£[f(w) - f(2)]] < C, thus |f(w) - f(2)| <e. O

Remark 3.11. (1) This shows that for locally bounded non-commutative functions
we get the derivative 0 f(z;w) = 0f(2,2) jw as part of the data of higher f,,:

)-8 )
0 =z 0 f(z) )

(2) In the same way we get also higher derivatives:

21wy 0 f(z1) Of(z1,22) fun *
J10 22 wol=| 0 f(22) Of (21, 23) fwa |,
0 0 2z 0 0 f(z3)

where
x = 0% f (21, 22, 23) f(wy, ws)
is a second-order difference quotient, which gives the second derivative
0?f(z,2,2) f(w1,ws).
(3) One should also note that uniform local boundedness of f allows us to con-
trol the size of the derivatives, so that one gets a convergent “Taylor-Taylor
expansion”

oo

fz+w)=Y 0" (z,z2,...,2) j(w,...,w).
s

In Exercise 7 you are asked to prove this expansion.

The Taylors here are two different people: Brook Taylor (~ 1715) from the
usual Taylor series, and Joseph Taylor (1972), who started the theory of non-
commutative functions in [Tay].

For more on the Taylor-Taylor expansion (and also other aspects of non-
commutative functions) one should consult the monograph Foundations of Free
Non-Commutative Function Theory (2014) by D. Kaliuzhnyi-Verbovetskyi and
V. Vinnikov [KVV].
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3.2 Rigorous definition of fully matricial
functions, caring also about domain

Definition 3.12. (1) For a C*-algebra B we denote:
(i) M,(B) = M,(C)® B=:Bm;
(ii) for z € B™ we put

2M =1, ®2= 0 Z O € My (B);
0O 0 - z

(iii) for z; € BM | 2y € B(™) we put

21 @ 2o = (21 O) e Bm).

0 Z9
(iv) for z € B(™ and r >0 we put

BM™(z,r)={weB™ ||z-w|<r} and B(zr):=J B (=™ r).
m>1

(2) A fully matricial domain Q = (2(™),«y over B is a sequence of sets Q™) c B(?)
satisfying the following conditions:

(i) Q respects direct sums: z; € QM and 25 € Q™ implies that z; ® 29 €
Qem).
(i) Q is uniformly open; i.e., for each z € Q) there exists r > 0 such that
B(z,r) c
(iii) € is non-empty; i.e., at least one Q™ is non-empty.

(3) Let ©; and €9 be fully matricial domains over B; and Bs, respectively. A
fully matricial function f = (f),en : Q1 — Q3 is a sequence of functions
f) an) - an) satisfying the following conditions:

(i) f respects intertwinings; i.e., for z; € an), 29 € Qém), T € My (C) we
have: 2T =Tz, implies that f((2)T =T f(™)(z,).

(ii) f is uniformly locally bounded; i.e., for each z € Qin) there exit r > 0 and
M > 0 such that

B(z,r)c and f(B(z,7)) c B(0,M).

Ezxample 3.13. (1) Non-commutative monomials and polynomials over B are fully
matricial with domains Q" = Q8™ = M, (B); see Exercise 6.
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(2) Consider
QM = {2z € B™ | 2 is invertible}.

Then Q = (2M),,y is a fully matricial domain and
FiQo 2o ()=
is fully matricial.

Proof. Tt is clear that € respects direct sums and is non-empyt. To see that 2
is uniformly open, we claim that B(z,1/|z71]|) c . To check this, note that
for we B(z,1/|z7|) we have

wl=[z-(z-w)] =2z 1-(z-w)z"']" i (z-w)z™]

Since [(z —w)z7|| < 1, the series converges in norm, and thus w € €.
From this calculation we also get that

[~

1= [z 2 —wl”

Jw™] <

which shows that
fIB(2,1/2l=7H)] e B0, [27H]/2);

thus f is uniformly locally bounded.
[ also respects intertwinings: suppose that 27" = T'zo; this implies that Tz =
2T de, Tf(22) = f(21)T. O

Proposition 3.14. (1) Suppose that f,g: Q1 — Qo are fully matricial. Then so
are f+gqg and fg.

(2) Suppose that f:Qy - Qo and g : Qy - Q3 are fully matricial. Then so is the
composition go f: ) - (3.
Proof. We only prove (1). Suppose that 217 = T'zy. Then we have
(f+9)(z1) T =f(z2)T+9(21)T =T f(22) + Tg(22) =T - (f + g)(22)

and

(f9)(z1) - T = f(z1)9(2)T = f(21)Tg(z2) = Tf(22)9(z2) = T (fg)(z2).
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Uniform local boundedness can be seen as follows: Consider z € Q") then there are
r1, My and ro, My such that

f(B(Z7T1))CB(07M1) and g(B(Z7’)“2))CB(O,M2).
Put 7 := min(ry, ry); then we have for w e B(z,r)

[+ 9) (@) < [ f(w)] +lg(w)] < My + M,

and
[(fa) ()] < | f ()] - [g(w)] < My - M.
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4 The Operator-Valued Cauchy
Transform

Now let’s get serious about the operator-valued Cauchy transform as a fully matricial
function.

4.1 The upper half plane as domain of the
Cauchy transform

Definition 4.1. Let (A, B, E) be an operator-valued C*-probability space and let
X = X* e A. The Cauchy transform Gx = (Gg?))neN of X is defined by

G HY (My(B)) » H (My(B)), zw~ideE[(z-1®X)™],
eM, (A)

where H* and H~ denote the upper and lower, respectively, half-plane.

Notation 4.2. Let A be a unital C*-algebra.
(1) For A e A we put

1
Re(A) := §(A + A*) real part
1 : .
Im(A) := 2—(A - A") imaginary part
i

(2) We define the strict upper/lower half-plane of A by

H*(A):={AeA|3e>0:Im(A) >¢-1}
H (A):={AeA|Je>0:Im(A) <-e-1}.

Instead of 3¢ > 0:Im(A) > e-1 we will usually write Im(A) > 0; and in the
same spirit Im(A) < 0 for the second condition.
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Proposition 4.3. Let Ae H*(A). Then A is invertible and A~' ¢ H-(A).

Proof. Put X :=Re(A) and Y :=Im(A); by assumption Y is positive and invertible,
and thus we can write

A= X +iY =Yy 12xy-12 4 ]y t2,

Since Y 1/2XY -2 is selfadjoint, we have that 7 is not in its spectrum and hence A
is invertible, with
A—l — Y_1/2[Y_1/2XY_1/2 + i]—ly—l/Q.

Let us denote Y-12XY /2 by X, then we can calculate
(X +i] ' =[(X =) (X +9)]H(X -i)=(X2+1) (X -1),
which gives finally

Im(A™) =Y 2. Im[X +i]L Y2 =y 12 (X2 +1) Y 2 <0,
———
>0

[l
Proposition 4.4. H*(B,,.) := (H*(M,(B)))nen s a fully matricial domain over B.

Proof. (i) H*(B,.) respects direct sums.
Consider z; € H*(M,,(B)) and z, € H*(M,,(B)); then Im z; > &1 -1 and Im 25 >
g9 -1 and thus

z1 0 _ Imzl 0 81'1 0 . .
Im(O 22)_( 0 Isz)Z( 0 62'1)2mm(51’€2) L

hence 2y ® 29 € H* (M, (B)).
(ii) H*(Bp.) is uniformly open.
Consider z € H*(M,(B)), ie., Imz > €-1; we claim that then B(z,¢) c
H*(B,.). Namely, consider w € B(z,¢), i.e., w € M, (B) with ||z2(™ —w]| <.
Then we have
[ Tm 2™ — Imw]| < |20 - w]| <¢,

and thus Im z(™) —Imw<e-1, or

Imw> Imz™ —¢.1> 0;
—_—
=(Im z)(M)>e-1

which shows that w € H*(M,,,(B)).
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(iii) H*(By.) is clearly non-empty.
[

Theorem 4.5. Let (A, B, E) be an operator-valued C*-probability space and X =
X*eA. Then the Cauchy transform

Gx:H"(B,.) - H (B,.), 2 id®FE[(z-1® X)™]
is a fully matricial function.

Proof. (i) First we should check that Gg?) sends H*(M,(B)) to H=(M,(B)). For
this, consider z € H*(M,(B)), i.e., Imz >¢e-1. Then we have Im(z-1® X) =
Imz>e-1, and thus 2—-1® X € H*(M,(.A)); then Proposition 4.3 tells us that
(z-1eX)te H (M,(A)).

Now we apply id®F : M, (A) - M, (B). By our assumption that (A, B, F) is
an operator-valued C*-probability space, we have that E : A — B is positive.
Since E is a conditional expectations this implies that it is completely positive,
i.e., all its amplifications id ® ' are also positive. (Note that positivity of a
linear map from A to B does in general not imply complete positivity; one
needs some more structure, like conditional expectations.) So this implies
then that

ideFE: H (M,(A)) - H (M,(B))

and finally we have

G (2) =ideE[(z-1® X) '] e H (M,(B)).
eH-(Mn(A)

(i) It is clear that Gx respects intertwinings; compare Example 3.13 (2).
(iii) It remains to see uniform local boundedness. Consider z € H*(M,(B)), i.e.,
Imz >e-1. As in the proof of Proposition 4.3, we write

(z-19X)!
= {Im(z)l/2 [z 1+Im(2)"2-(Re(2) -1® X) ~Im(z)_1/2] 1111(2)1/2}71

=Im(2) 2 [i-1+Im(2) 2 (Re(z) - 1 X) -Im(z)’m]_1 Im(z) 2,

s.a. operator

[-]<1 by functional calculus

which yields
[(z = 1@ X)™| < [Tm(2)""2[* = [ Im(2)7"].
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Now note that id ® F has, as a normalized completely positive mapping, norm
1 and thus we have

1GP(2)] = lideE[z - 10 X) ]|

<[(z-1eX)7
< [ Tm(2)7!|

1
<=

93

since Im z > -1. Now we are ready to consider w € B(z,£/2), say w € M,,,(B).
According to the calculations in the proof of Proposition 4.4 we have

9

Imw>Imz™ —¢.1> g -1, and thus |Gx(w)| < | Im(w)™| <

(LI

hence we have a local uniform bound.

4.2 Positivity and boundedness properties of

non-commutative distributions

Remark 4.6. (1) In the scalar-valued case, i.e., B = C, all relevant information

(2)
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about distributions, i.e., probability measures, is encoded in the Cauchy trans-
form; in particular we have
(i) weak convergence of probability measures corresponds to pointwise con-
vergence of the Cauchy transforms;
(ii) there are precise characterizations when an analytic function is a Cauchy
transform.
There are kind of analogues of this in the operator-valued case. Of course,
now we are essentially encoding information about moments. Note that in
the scalar-valued case moments describe probability measures uniquely if the
latter are compactly supported, which corresponds to bounded operators. In
the operator-valued case we restrict for now to bounded operators (in our
C*-probability spaces), thus to the non-commutative analogue of compactly
supported measures. In the scalar case we can deal with any probability
measure (via analytic tools, not via moments), in the operator-valued case the
unbounded situation is quite unclear.
Note that a compactly supported measure on the level of moments is charac-
terized by



(i) positive definiteness of moments, in the sense that

/p(t)md,u(t) >0 for any polynomial C[t];

(ii) and exponential boundedness of moments: if supp pu c [-M, M ] then

mal =1 [ edu®) < [ 1Pdpc) = [ rdn(e) < me.

We will now define non-commutative distributions abstractly via moments via
such properties

Definition 4.7. (1) Let B be a unital algebra. We denote by B(z) the polynomi-
als in the formal variable x with coefficients from B, i.e., the free product of
C(x) and B, with amalgamation over C-1. Elements in B(z) are thus linear
combinations of monomials of the form

boxblx"'bk_ll'bk for k € No, bo, . ,bk eB.

The elements in B, corresponding to k =0, are the constant polynomials. If B
is a =-algebra, then B(x) becomes a *-algebra, too, by declaring z* = z, i.e.,

(boxbyx---b_1xb)* = bixb;_|---xbizby.

(2) If B is a unital C*-algebra, then a B-valued distribution is a linear map p :
B(x) - B sucht that:
(i) p is unital, p(1) =1;
(ii) p is a B-B-bimodule map, i.e.,

(bp(2)") = bu(p(z))b”  for all p(x) € B(z), b, b’ € B;
(iii) p is completely positive, i.e.,
1 (p(x)*p(x)) > 0 for all n € N and all p(z) € M, (B(x)),

where p(") is, as usual, the amplification id ®pu.
We denote the set of all B-valued distributions by 5.
i€ Xg is exponentially bounded if there exists M > 0 such that we have for all
n € Ny and all bq,...,b, € B that

| (@b abpz) | < M by ba].

We write then p e X%.
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(3) If (A,B,FE) is a B-valued C*-probability space and X = X* € A, then the
(B-valued) distribution pyx : B{x) - B of X is given by

px(p(z)) = E[p(X)]  for all p(z) € B(x).

Remark 4.8. ¥Y% should consist of all possible B-valued distributions of selfadjoint
random variables X in B-valued C*-probability spaces. That px € X% for such X is
clear (see Exercise 13), that we also have the other direction is the main content of
the following theorem of Popa and Vinnikov [PV].

Theorem 4.9 (Popa,Vinnikov 2013). For a unital C*-algebra B the following are
equivalent for a linear map p: B{x) - B.

(i) peXy.
(ii) There ezists a B-valued C*-probability space (A, B, E) and a selfadjoint X € A
such that px = .

Rough sketch of the proof. In the scalar-valued case we realize X via left-multiplication
by & on C(x) via GNS-like construction. Now we do an operator-valued version of
this, i.e., we put on B(z) a B-valued inner product by

(p(2),q(x)), = p(p(x)*q(x)) € B.
This gives on B(z) a (C-valued) norm

[p(@) ] = [ (p(2), p(@))ll 4

Completing B(z) with respect to this gives a Banach space Mu. B(z) acts on
this space via left multiplications. Checking a couple of technical details shows then
that this action is bounded and adjointable and thus generates a C'*-algebra A. Let
X € A be multiplication with . We also have a conditional expectation E : A - B
given by E[A]:= (1, Al),. With respect to this, X has distribution pu:

E[boXby--by Xbper] = (1, boXby-by X b 1),
= (1,boX by by Xbpi1),
= (10 X by-+-by X by )
= 11(bo X by+by X bysr).
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4.3 Moments and Cauchy transform

Remark 4.10. (1) Since G x depends only on the distribution px of X, we can also
write Gx = G, for ux = p.
(2) As in the classical case the moments of X should be the coefficients in the
power series expansion of Gx in 27! about infinity. To formulate this nicely,
it is better to go over to the function Hx(z) := Gx(z71).

Proposition 4.11. Let (A, B, E) be a B-valued C*-probability space and X = X* €
A. Then the function

Hy :H (B,.) > H (By), 20 Hy(2):=Gx(z)

is a fully matricial function which has a fully matricial extension to a uniform
netghbourhood of 0 and we have

EboXby-bp1Xb,] = 0" Hx (0,....0) §(bo, b, .- .. by).-

Proof. We have, uniformly in all n (where we just write X instead of 1® X and F
instead of id ®F):

Hx(z)=Gx(z") = E[(z"' - X) "] =2 B[(1-X2)"'] =2 ) E[(X2)"],

k>0

where the sum converges uniformly for |z| < 1/|X||. Thus Hy has an extension to
B(0,1/]X]).

Note (see Exercise 7) that we have in general that 0"*'Hx(0,...,0) §(bo,...,b,) is
the upper right entry in Hx(z), where

0b O ... 0 0
00 b - 0 0
w0 0
““lo o 0 ~ b, 0
00 0 — 0 b,
000 — 0 0

Since z is nilpotent we can use the expansion Hx(z) =z Y10 E[(X2)¥] to calcu-
late Hx(z) in this case; the series will stop after the term k = n. Let us evaluate
the cases n =0 and n = 1.

For n =0 we have

Hx(g %)):(8 %0), and thus 0Hx(0,0) by = by = E[bo].
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For n =1 we have

0 by O 0 by O 0 by 0)\[(E[X] 0 0 0 by O
HX 0 0 b1 =10 O bl +]0 O b1 0 E[X] 0 0 O bl
0 0 O 0 0 O 0 0 O 0 0 E[X]J\0 0 0
0 by bE[X]b
= 0 0 b1 y
0 0 0
and thus
82HX(0,0,0) H(bo,bl) = boE[X]bl = E[boXbl]
The case of general n works in the same way. O

4.4 Analytic characterization of Cauchy

transforms

Remark 4.12. (1) In addition to the analyticity property from Proposition 4.11,
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our Cauchy transforms G'x have also a specific leading order for z - oo, namely
Gx(2)=z"+- or Hx(z)=z+-

or more precisely: z,Gx(zx) - 1 in M, (B) for any sequence (zj)y in M, (B)
for which |z;'| ~ 0. Those properties are sufficient to characterize Cauchy
transforms G, for p € X%, as shown in the following theorem of John Williams
[Wil].
Recall first the classical scalar-valued version: Let g : C* — C~ be an analytic
function such

(i) iyg(iy) >1las Roy — oo

(ii) and h(z) := g(1/z) has an analytic continuation to a neighborhood of 0.
Then there exists a (uniquely determined) compactly supported Borel proba-
bility measure p on R such that g =G, i.e.,

62 = [ ().

Note that without (ii) this gives a characterization of G, for arbitrary proba-
bility measures on R.



Theorem 4.13 (Williams 2017). Let B be a unital C*-algebra and g = (g ),y be
a fully matrical function g : H*(B.) = H™(By.) such that
(i) for any n € N and for any sequence (zy)ren with zy, € M, (B) and which satisfies
limyeo [ 251 = 0 we have

lim 2™ (1) =1 in M (B);
(ii) the fully matricial function h = (h("™) .y, with R (2) = g (2z71), has a fully

matricial extension to a uniform neighborhood of 0.
Then g =G, for some e XY.

Sketch of proof. According to Proposition 4.11 we define the distribution by
((bowhy-+b,xby,) == 0" (0, ..., 0) §(bo, b1, ..., by).

One has to check that this has all the properties required in Definition 4.7 for .
Exponential boundenness comes from uniform boundedness of A; furthermore we
have

(5) = 0h(0.0) b= (0 + 1) = tim U <im0 ) =,

-1

and thus: p|g =id. From this and complete positivity follows by general arguments
the bimodule property.

The main problem is to show the positivity property. We reduce the problem to
the scalar-valued version by applying states. For this note that

be B positive <= ¢(b) >0 for all states ¢: B - C.

Hence we consider, for a state ¢,

¢(g9(§-1)):C~C

as a function in £ € C; it satisfies the classical characterizing properties of a Cauchy
transform, hence

oate- 1) = [ Fdnel®)

for some probability measure p,. But the coefficients in the expansion about co for
this are ¢(E[XF¥]), hence the E[X*] are under all ¢ a positive definite sequence in
C, and thus the E[X*] themselves are positive definite in B. In order to get this
also for general moments in B(z) one has to consider matrix versions of this and
apply states ¢ to the (1,1)-entry of matrices in M, (B).

[
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5 Operator-Valued Freeness

In order to be able to say something more on operator-valued distributions we need
more structure in the distribution. The most prominent case is given by variables
which are free. It is crucial that we have an operator-valued version of free prob-
ability theory, which behaves nicely with respect to matrix amplifications. This
operator-valued freeness will be presented here and will play a main role in most of
the coming chapters. Operator-valued free probability theory is, as its scalar-valued
version, due to Voiculescu [V0i95]. Our presentation of operator-valued freeness is
mainly based on [Sp, MSp].

5.1 Definition and basic properties of
operator-valued freeness

Definition 5.1. (1) Let (A, B, E)) be an operator-valued probability space. Sub-
algebras B ¢ A; ¢ A, i € I, are called free if E[ay---a;] = 0, whenever we
have:

o keN;
o aje A, withd;el, forall j=1,... k;
o Elaj] =0forall j=1,... k

ip # iy # i3 # -+ # ixg1 # 1 (neighboring elements are from different

subalgebras).

Instead of free we will also say freely independent, or more precisely free with
respect to E or free (with amalgamation) over B or similar phrases.

(2) Random variables X; € A, i € I, are free if the corresponding subalgebras

(¢]

B(X;) := algebra generated by X and B = {p(X;) | p(z) € B(z)}
are free

Proposition 5.2. If A;, i €I, are free then E is on the algebra generated by all A;
determined by the restrictions E|, for all i € I and by the freeness condition.
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Proof. The algebra generated by all A; consists of elements which are linear com-
binations of a;---ar where k € Ng, a; € A;; with i; € I; we an also assume that
iy # iy # --- # . Consider such ay---a;. We have to show that E[a;--ax] is deter-
mined by E|4, (i € I). We do this by induction. The case k=0 (E[1]=1) and k=1
are clear (as a; € A;,).

Consider now general k. We put

a? =aj - E[aj] € .Aij, then E[a?] =0.
eBcA; .

We get then
Elai-ai] = E[(ai’ + Elay])-(aj + E[ak])] = Elai---aj] + rest.

The first term vanishes by the definition of freeness and the rest-term is a sum of
terms of smaller length, which are already determined by the induction hypothesis.

]

Ezxample 5.3. (1) Consider a; € A; and ay € Ay. Then we have
0= E[(a1 - Elai])(ag - E[ag])]
= Elaias) - E[ay - E[as]] - E[E[a1] - az] + E[E[a1] - E[as]]
The three last terms are actually all equal to E[ai]- E[az], which leads to

E[Glag] = E[al} . E[CLQ].
(2) Consider ay,as € Ay and ag € Ay. Then we have

0= E[(a1 - E[a1])(as - E[ay]) (a1 - E[a1])]
= Flajasa ] - E[al - Elas] -&1] + six other terms which cancel.

Thus we obtain E[ajasa;] = E[a;E[az]a;]. This cannot be factorized further,
as FE[az] € B does in general not commute with a; or a;. However, this is okay,
as Elas] € B and hence a; E[az]a; € Ay, so E[ayE[az]a;] is a moment which
is determined by E[as] and by E|4,.

(3) For ay,a; € Ay and as, as € Ay one calculates in the same way

Elajasaias] = ElaiElag]ay -Elas |+ Elar]-ElasE[ay ]as]-FElai | Elax ] Ela | Elaz].
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Remark 5.4. (1) If B=C and E = ¢, then ¢(a) commutes with everything and
we can factorize the final results, like

p(arazay) = p(arp(az)ar) = p(aiar)e(az),

and we get the formulas from usual (scalar-valued) free probability.

(2) Note: on the level of moments, operator-valued freeness works like scalar-
valued freeness, but one has to keep the original order of the elements.

(3) Note also that with respect to £': A — B the “non-commutative scalars” B are
free from any subalgebra.

(4) For a random variable X € A, the restriction of E to B(X) is exactly the
information about the moments of X. Hence Proposition 5.2 says in this case
that the joint moments of free variables X; (i € I) are determined by the
moments of the individual variables.

For example, for X and Y free we have

E[XbY]=E[X]-b-E[Y]=E[Xb]- E[Y] = E[X]- E[bY]

and
E[XbiYbX]=E[Xb - E[Y] bX].
N——

moment
of Y

moment of X

(5) Note that Proposition 5.2 gives us essentially a free product construction on
an algebraic level. Since we want to do our constructions on an analytic
C*-probability level, we should extend our abstract notion of B-valued distri-
butions from Definition 4.7 from the case of one variable to the multivariate
case.

5.2 B-valued joint distributions

Definition 5.5. (1) Let B be a unital C*-algebra. We denote by B(z;;i € I) the
non-commutative polynomials in the formal variables z; (i € I') with coefficients
from B; they are linearly spanned by monomials of the form

boxilblxiz---bk,lxikbk with £ € No, b(), . bk € B, ’il, A ,ik el.

This becomes a *-algebra by declaring x} = x; for all 7 € 1.
(2) A B-valued (joint) distribution is a linear map p : B(x;;i € I) - B such that
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(i) p(1) =1
(ii) p is a B-B-bimodule map;
(iii) p is completely positive, i.e.,

ideu(p*p) >0 for all n e N and p=p(x;;i€ 1) e M, (B{x;;iel));

(iv) p is exponentially bounded, i.e., there exists M > 0 such that for all
keNy, by,...,bp_1 € B, 11,...,1; € I the following holds:

|pu(i, brs, by ai, | < MP¥|by |- [by .
We denote
Y5 == {p satisfying (i), (ii), (iii)}, 250 = { e Bk, satisfying also (iv)}.

(3) If (A,B,E) is a B-valued C*-probability space and X; = X} € A for all i € I,
then the B-valued joint distribution pi(x;.er) € ng’o is given by

pxsieny(P(xisie D)) = Elp(X;iel)] for all p(x;;iel) e B(xg;iel).

Theorem 5.6. For a unital C*-algebra B and for a linear map p: B{x;;i€ I) - B
the following are equivalent.
(i) e Zé’o.
(it) There exist a B-valued C*-probability space (A,B,E) and X; = X} € A for
each 1 € I sucht that p = pu(x,ier)-

“Proof”. This can be done as in the proof of Theorem 4.9, or it can also be reduced
(at least for |I| < oo) directly to Theorem 4.9 with the usual matrix trick by taking
a diagonal matrix X, where the X, are sitting on the diagonal. O]

5.3 Compatibility of operator-valued freeness
with matrix amplifications

Proposition 5.7. Let (A,B,E) be an operator-valued probability space and let B c

A;c A, iel, be free over B. Then, for any n € N, in the operator-valued probability

space (M, (A), M, (B),id®F), the subalgebras M, (B) c M, (A;) c M,,(A), i€, are
free over M, (B).
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Proof. Consider A; € M, (A;;) such that iy # iy # --- # 4, and id®E[A;] = 0 for all
j=1,...,7. We have to show that id®FE[A;---A,] = 0. Write A4; = (a(j))kl | with
a,(fl) € A;,. Then

id@B[A;] = (Blag D=0

means that all E[a,(jl)] 0. For A:=A;-A, = (aw)y ., we have

n
1 (2 (r)
gl = Z ak’rl aTlT? o ark 1l
Tl Tl =l e\~
€A eAi, eA;,
For each fixed choice of rq,...,7,_1, the factors in the product are coming alternat-

ingly from different subalgebras and each is centred under E. Hence, by the freeness
of the A;, we get

Elan] = Y Elay,)arltya; ] = 0;

’I"k 1l

=0, for all r1,...,7x_1

but this means that
ideA = (E[akl])z’lzl =0.

]

Remark 5.8. (1) Note that M,(A) is also a B-valued probability space with re-

spect to tr ® F, where tr denotes the normalized trace on M, (C). We are not
claiming freeness in this space — this is actually not true in general.
For example, consider a scalar-valued probability space (A, ¢). Then M5(A) is
both a scalar-valued probability space (with respect to tr ®p) and an operator-
valued probability space (with respect to id ®p). Freeness with respect to ¢
goes only over to freeness with respect to id ®, but not with respect to tr ®¢p.
For example, if ai,a, € A; and as, @y € Ay are free in A, then for

0 0
A1 = (C(L)1 (~11) € MQ(Al) and AQ = (ao2 &2) € MQ(AQ)
we have
_ a1Qa9 0
Ards = ( 0 a1a2)
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and thus on the operator-valued level:

. ~ gp(ala2) 0
idep[A1A;s] = 0 @(&15‘2))

o(ar)p(az) 0 )
0 @(a1)p(az)

p(a) 0 )(wm) 0 )
0 w(ay) 0 ©(az)
=id®p[A;]-id®p[As];

on the scalar-valued level, on the other side, we have in general:

trop(A;Ay) = %[so(al)w(az) +p(a1)p(az)]

# 5 [e(an) + ()] 5 p(an + ()]

=trep(A;) - trep(As).

Note however that, even if in the end we are only interested in moments with
respect to tr ® F, it is good to know something about the moments with respect
to id®FE, since those are related by tr®FE = tr[id®F]; i.e., instead of going
directly down to B,

M, (A) > B
we can also decompose this into two steps:

ideFE

M, (A) <% M,(B) = B.

This simple observation will be crucial for our latter investigations!

5.4 Structure of formulas for mixed moments in

free variables

Remark 5.9. (1) We have to understand better the structure of the formulas for
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mixed moments in free variables. This is analogous to the scalar-valued case,
in particular non-crossing partitions will feature prominently. For the relevant
definitions and notations in relation with partitions and kernels of multi-indices
we refer to Chapter 2 of the Free Probability Lecture Notes.


https://rolandspeicher.files.wordpress.com/2019/08/free-probability.pdf

(2)

As in the scalar-valued case, we get for “non-crossing moments” a kind of
factorizing into the moments of the individual subalgebras; however, we have
now to respect the nestings of the blocks. This is just an iteration of the
“factorization” from Example 5.3,

E[alagdl] = E[al . E[CLQ] : &1] for {al, dl} free from 9. (51)

For example, consider {ai,as,as}, {e1,ea2}, ¢, d which are free with respect to
E. Then we can iterate the factorization (5.1) as follows:

Elajeicesasdas] = E[(G1E[61062]a2)d(a3)]
L‘ |

= E[a1 Elejces] agE[d]ag]
—_——
Ele1E(c)ez]

_E{alE[elE[ ]CLQE 0,3}
We will denote this “factorization” by
Erlai,er,c eq,az,d,as] for = M |

Note that also for “crossing moments” only non-crossing factorizations show
up in the formula expressing it in the individual moments, like in part (3) of
Example 5.3, for {ai,a,} free from {as, as}:

Elaiazd1a2) = E[a1E[as)a |E[as] * Ela1]E[asEla1]as| ~ Elai] Elas] E[a] Elas]-

N A e T e

This is quite relevant in the operator-valued case; whereas in the scalar-valued
situation the meaning of a crossing term like

@M(le ag, a1,0z) = p(a1ay) - p(aas)
is clear, there is no canonical definition for
E%[ah as, al) 62]

in the operator-valued case:
E[aldg] . E[agdz] # E[CLQ&Q] . E[aldl]

in general, and there is no nested version which respects the order of the
variables.
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Definition 5.10. (1) Let B c A be an inclusion of unital subalgebras. A B-
balanced map T : A* - B is a C-multilinear map, which satisfies also the
following conditions for all a,...,a,€ A, b’ e B, k=1,...,n-1:

T(bay,as,...,a,b") =0T (ay,as,...,a,)b
T(ay,...,axb,aks1,...,a,) =T (aq,. .., a5, bag1, ... a,).
(2) For a given sequence T, : A" - B (n € N) of B-balanced maps, we define the

corresponding multiplicative maps T, (n € N, w € NC(n)) recursively on the
number of blocks by: T}, :=T, for all n € N; and, for

m=cU(p+1L,p+2,...,p+q) e NC(n)

interval block

we set
Tre(ay,...,an) =T5(a1,...;ap - Ty(Apr1, -y Qpiq)s Apigats - -5 An)-
Note that T, is also B-balanced.
Ezxample 5.11. For 7w =|[Y|"Y || we have

T (a1, az,as, as,as, ag, ar, as, Gg, aig)

LT L

= TQ(al T3(as - To(as, as),as - Ti(ag) - To(az, as), ag), alo)-

Proposition 5.12. Let (A, B, E) be a B-valued probability space and let B c A; c A,
i €1, be free with respect to E. We denote, forneN, by E,, : A® - B the B-balanced
map given by E,(a1,as,...,a,) = Elaias-a,] and by E,, for alln e N, m € NC(n),
the corresponding multiplicative map. Consider now a; € A, for j = 1,.... k. If
keri € P(k) is non-crossing, then

E[alag---ak] = Ekem'(al, as, ... ,ak).
Proof. By iteration of (5.1):

Elajasaq] = E[al - Elas] -&1] = Eu(al,a2,a3) for {a1,a,} free from as.
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5.5 Positivity of free product contructions

Proposition 5.13. Let (A, B, E) be a B-valued probability space. Assume that B is
a unital C*-algebra and A a *-algebra. Let *-subalgebras Bc A; c A, i€ I, be free
with respect to E and assume that A is generated by all A;, i € I, as an algebra. If
E is positive restricted to each A; then it is also positive on A.

(Recall that “positive” on a *-algebra A means that E[aa*] >0 for all a e A.)

Proof. (i) As in the proof of Proposition 5.2 one can see by recursion that each
element in A can be written as a linear combination of elements of the form
ay--a, with

- neNy (n =0 corresponds to elements from B);

- ap e A,

- 21%22%#%

- Elag]=0forallk=1,...,n.
If a is a sum of such elements and we want to argue that E[aa*] >0, then we
have to understand E appplied to a product of two such elements.

(ii) So let us consider two such elements a;---a,, and a;---a,, as above, with a;, € A;,

and @; € A;,. Then we have

Elay--ana),-aj] = 5nmE[a1E[a2---E[an&;]---&5]&{],

which is only different from 0 if i = j, for all k=1,...,n.
As an example for the derivation of the above formula consider n =m = 3:
E[alagagégdgdﬂ = E[CL16L2 : ((&3&5)0 + E[agdg]) : EL;&I]
= E[Cbl (IQE[CLP,EL;]&; gLI]
———
(...)°+E[...]

= E[alE[agE[CLg&;]&;]dI]

Hence, for the calculation of E[aa*], if suffices to consider a which are sums

of products of the same lenght and the same i-pattern.
(iii) Consider

a= Zagk)---a%k), where n € Ny, r € N, a§k) €Ay forallk=1,... r
k=1

with iy # i # -+ # 4, and E[agk)] =0foral j=1,...,nand k=1,...,r. Then
we have

Elaa*] = ,; E[aﬁ’“)---E[aﬁli)lE[aék)aff)*]aﬁffj]---ag”*].
=1
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Now note that (E[a{a{P* 1)k, is a positive matrix in M, (B) since E is com-
pletely positive (see Exercise 9). But since B and thus also M,.(B) is a C*-
algebra this means that we can write this positive matrix as BB* for some
B=( ) hrno1 € M(B), which yields then concretely that

E[a® ] = z b e forall k,l=1,...,r
rp=1

Thus we can continue our above calculation as follows

N k B xe k)W (e (D%
Elaa*]= )] E[ag ). E[a®, - Zlbfwn)bﬁn) a0 ]
k=1 g

> 1E[(a(k) (k))( (l) (l)) ]

7“'n

Again, (E[(a(k) bfuk))( 0 bgl)) )k is a positive matrix in M, (B) and its en-
tries can thus be ertten in the form

El(ag2 b)) (@08 1= 3 b0k b,

Tn-1=1

for some b,(ﬂﬁ)l r, € B. Tterating this leads finally to

Elaa']= Y 3 - DI

r
kil=1r1=1 rp=1
r

ST 3 (S ()

ri=1 rn=1 k=1 =1

O

Theorem 5.14. Let B be a unital C*-algebra. Let py € Eé’o be a joint distribution
on B{xi;i e I) and py € X3° be a joint distribution on Bly;;j € J), with InJ = @.
Then there exists a uniquely determined p € EéUJ’O on B(x;,y;;1€1,j€J) such that:
o restricted to B(x;;i € 1) is pr and p restricted to By;;j € J) is py;
o B{z;;iel) and B(y;;j € J) are free with respect to p.
We write then p =y * puy.
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Proof. As a linear map we can define p (uniquely!) by the knowledge of p; and
py and the freeness condition, by writing each element in B(x;,y;;i€ 1,7 € J) as a
linear combination of alternating products of centred elements from B(z;;i € I) and
from B(y;;j € J). On all such products p is set to 0, only on constant terms b € B it
is pu(b) = b.

One has then to check the properties (i)-(iv) from Definition 5.5 in order to see
that e X570, (i) and (ii) are clear. (iii) on the base level ist just Proposition 5.13;
that it is also true for the matrix amplifications follows from the same proposition,
if we take also into account that freeness between B(z;;i € I) and B(y;;j € J) goes
also over to matrices, by Proposition 5.7. For (iv) we have to see that we get also
exponential bounds for mixed moments in x; and y;, if they are free, and if we have
such bounds for the z;, i € I, and for the y;, j € J, separateley. We will see this later,
when we have developed more theory for the structure of such mixed moments; see
Example 9.5. O

Corollary 5.15. Let B be a unital C*-algebra. For each p =p(x;;iel) e B{x;iel)
with p = p* we have a corresponding operation p= on LY given by

PPN xex N> N, (wi)ier = PP (i € 1),
| S —
|1|-times

where pP(p;;i € 1) is the distribution of p(x;;i € 1) with respect to * i

Remark 5.16. (1) Note that via matrix amplifications we can also do the same for
all selfadjoint p € M, (B(x;;i € I)).

(2) O is the generic symbol for an operation with free variables, to be used with
care and imagination; for example, we have the free convolution i, 8 ps for
p(x1,x9) = 11+ 29 and the free commutator [y Oz for p(x1,22) = 129+ T221
or the free anti-commutator {py O ps} for p(a1,z5) = %(IL‘ll‘g — Tomy).

(3) In the scalar-valued case, B = C, all those operations p” are on the level of
compactly supported probability measures. In the Free Probability Lecture
Notes we saw how to deal with py @ s, but we could not address general p=.
We will see later that in our operator-valued context we have tools for dealing

with such general p°.
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6 Operator-Valued Free Central
Limit Theorem and
Operator-Valued Semicircular
Elements

Our benchmark distribution of free semicircular variables from Section 1.3 corre-
sponds on the operator-valued level to an operator-valued semicircular element.
This arises also abstractly in the operator-valued theory canonically as the limit
distribution in a free central limit theorem; furthermore, this operator-valued distri-
bution has a very concrete and nice description both on a combinatorial level (via
moments) as well as on an analytic level (via an explicit equation for its operator-
valued Cauchy transform).

6.1 Operator-valued free central limit theorem

Remark 6.1. (1) A central limit theorem asks about the limit distribution of
N—o0
Dyy(ummp) =5 2

where Dy, 5 denotes dilation by a factor 1 /v N. In terms of random variables
the question can be stated as

X+ + Xy Noo
VN

if X; are free and identically distributed (f.i.d.).

The relevant convergence is “in distribution”, which means that moments con-
verge. Since moments are elements in B, we also have to specify the type of
convergence there — we will usually take convergence in norm in B.
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(2)
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The relevant information about the input distribution is the second moment
(first moments are assumed to be zero); in the operator-valued case the second
moment is given by a mapping 7 : B - B with n(b) := E[XbX].

In a C*-setting E, and thus also 1, must be completely positive: for (bij);szl €
M, (B) we have

id ®E[]. ®X- (bij);l,jzl -1® X] = (E[Xb”X] m =1id ®77((bij)?,j:1)7

ij=1 =
—_———
n(bij)

and thus: iden(bb*) =ideE[(1® X -b)(1® X -b)*] > 0.
We also have that every completely positive 1 can show up as second moment
of a p e X%, see Exercise 16.
Much of the calculations for the central limit theorem and description of the
limit are similar to the scalar-valued situation (see Chapter 2 of the Free
Probability Lecture Notes). Let us first check the calculation of the moments
in the limit.
We consider (X;);y which are f.i.d. with respect to E. We also assume that
o X; centred: E[X;]=0 for all i e N;
o second moments are given by n: B - B: E[X;bX;] =n(b) for all i e N
and all beB.
Then we put Sy := (X; + -+ Xn)/V/N and calculate its moments.

1

E[SNblSNbQ---Ska_lSN] = W ‘.[HZ:[N] E[Xi(l)lei(Z)‘"Xi(k_l)bk_lXi(k)]

1
= N Y. Y. E[Ximbi Xy Xig-1)bk-1Xik)]

weP (k) z[k]%[N] ~
keri=m =g(m .
depends only on kers by Prop. 5.2

1 . ‘

= i 9(m)-#{ik > [N]|keri =7},

weP (k) ”
~N#T

Now observe that if 7 has a singleton, then g(7) = 0; because we have F[X;] =0
and by the factorization (5.1). This implies then that only 7 € P(k) without
singleton contribute; for those we have necessarily #m < k/2. Now we have
enough information to go to the limit N — co. There only 7 with #m = k/2
survive; but those have to be pairings 7 € Py (k).

If 7 is crossing, then the definition of freeness (and interval stripping) gives
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g(m) = 0; here is an example which illustrates this:

g(%ﬂ) = B[ X101 X202 X103 X 304 X 305X ]
| L]

= B[ X101 Xoby X103 E[ X304 X3] b5 X5 ] (alternating and centred)

—— —— —

=0
So we get for our moment in the limit:

]\l[im E[SnbiSnby--Snbe-1Sn] = Y, g(m).
—00 meNCa (k)

Up to this point we just repeated the arguments for the scalar-valued case. But
now there will be a difference, namely g(7) is not the same for all 7 € NCs(k).
We have

9() = E[Xibi1 X1] = n(br)

|
g(u U) = E[lelengngXg] = E[E[lele] bg E[ngng]] = n(bl)bgn(bg)
I I n(b1) n(bs)

g(w) = E[lengbQXngXl] = E[lel E[XQbQXQ] b3X1] = T](bl’f](bQ)bg)
N————
L] n(b2)

Thus the limit variable S has moments
E[Sb1S] =n(b1), E[SbySbySbsS] = n(b1)ban(bs) +n(bin(b2)bs)
and in general

E[SblSSbk_lS] = Z nﬂ(bl,...,bk_l),
meNCa (k)

where 7, : B¥"1 - B is the C-multilinear map given by

Un(bl, s 7bk—1) = En[Xibl,Xibz, e 7Xibk—17Xi]-
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(4) Note that even in the case where all by, ..., bx_; are equal to 1, the contributions
of the n.(1,1,...,1) are different in general.

n (L1, =n(1) - 1-n(1) =n(1)%, g o (1,1,1) =n(L-n(1) - 1) = n(n(1)).

Note that 1 does not need to be unital: 7(1) # 1 in general.

Let us collect our observations in the following theorem.

Theorem and Definition 6.2. Let (A, B, E) be a B-valued C*-probability space.
Consider selfadjoint X; € A, i € N, which are f. i. d. (free and identically distributed)
with

o E[X;]=0 forallieN;

o E[X;bX;]=n(b) for allieN and be B, for a completely positive n: B — B.
Put Sy == (Xy + -+ XN)/\/N. Then ps, converges in distribution for N — oo to
vy € X%, which is given by

I/n(bol'bl'“bk_l.’l?bk) = Z bonﬂ-(bl, Ce 7bk—1)bk (61)
ﬂENCQ(k)
for keN and by, ...,b, € B. In particular, this says that all odd moments are zero.

Such a distribution v, € %, given by (6.1), is called B-valued semicircular distri-
bution, with covariance n. A selfadjoint element S with jug = v, is called (B-valued)
semicircular element.

6.2 Some basic properties of operator-valued
semicircular elements

Remark 6.3. (1) Note that this definition is compatible with amplifications: if
S is a semicircular element in (A, B, E) with covariance n : B — B, then
1 ® S is a semicircular element in (M,(A),M,(B),id®FE) with covariance
iden : M,,(B) — M, (B). For a more general version of this see also Exercise
17.

(2) Let us check that indeed v, € X%, i.e., that we have positivity and exponential
boundedness. On can do this by contructing bounded operators on the full
Fock space which have v, as distribution (for this see Exercise 19). We do it
here more abstractly.

(i) positivity
Since positivity is preserved in a central limit, we only need a distribution
p € X% which has first moment zero and second moment given by 7. In
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Exercise 16 we construct such a distribution, an operator-valued Bernoulli
element.

exponential boundedness

We have to estimate the norm of

Up(xby---bp_q2) = Z N (b1, ..o bg_1)
TeNCs (k)

for k = 2m even. Note first that n as a positive map is bounded, i.e.,
[n(@)| <nf-lo]  forallbeB,  where |n] < oo.

This implies that we have for each m e NCy(2m)

17 (v, o) | < Al ™ - 61 N b2

As an illustration for this let us have a look on the estimates for the two
contributions of order 4:

MLy 1y (b1, b2,b3) = [n(by) - by - n(bs) |
< () - [b2] - [1(bs) |
< |nl* - 1o1] - b2 - b5

and

N (b1, 02,b3) = [1(by - n(bs) - b3)|
< [l - b1 -n(bs) - bs]
< nl - o1] - [nCo2) ] - b5
S 7T e A Y I

Thus — by also using the fact that the number of elements of NCy(2m)
is given by the m-th Catalan number, which is smaller than 4™ — we can
now get our exponential bound:

[vn(2by--bpaz) | < #NCo(2m) - [n]™ - |01+ [ b2 |
<22 )™ -[ou ]+ [b2m-1 -

—_—
(2[n[)>m

61



(3) In (1) we said that if S is B-valued semicircular, then

62

S 0 ... 0
tos=|\ 7 ¢
00 - S

is also semicircular, over M,,(B). This is true more general; if we have free
semicircular elements over B and put linear combinations of them as entries
into an selfadjoint m x m-matrix, then this is an M,,(B)-valued semicircular
element. The proof can be done by using our free central limit theorem. Let
us elaborate on this via the example

N
(s 5)

where S; and Sy are free and semicircular over B, with covariances 7 and 7s,
respectively. Then we can realize S7 and S5 as

Si= lim SPUAAN g gy Dot My

N—o0 \/N N—o0 \/N
where all X;,Y; are free and E[X;] =0= E[Y;], E[X;bX;] =m(b), E[Y;bY;] =
n2(b). This gives us for S the realization

0 (X1+~-+XN)/\/N)

N—oco

(X1 +-+XN)/VN (Yi+-+Yy)/VN

—limL 0 X ot 0 X
Nem\/ﬁ X1 }/1 XN YN

The summands in the last sum are f. i. d. with respect to id ® ' with vanish-
ing first moment, and thus, by our central limit theorem, S is an Ms-valued
semicircular element. Its variance 7 is given by the second moment

bi1 bio . 0 Si\(bix b2 0 5
=id®F
”(bgl bQQ) : [(Sl 52)(521 b22)(51 52)]
S1092.51 S1091.51 + S102259
S101251 + S2b22S1  S1011.51 + S2b21.51 + S1b125 + S2b22So

Szlim(

:id®E(

_ (771(522) 11 (b21) )
M (bi2) 11 (b11) +12(b22)



6.3 Equation for the Cauchy transform of the
semicircle

Remark 6.4. In order to derive an equation for the Cauchy transform of v, we are
looking for recursions among the moments. Consider, with pg =1,

E[Sbleg~'-b2m_1S] = Z ’f]ﬂ—(bl,...,me_l).

weNC2(2m)

We write m € NCq(2m) in the form 7 = (1,1) U Uy, where necessarily [ = 2k even.

In this parametrization we can express 7, as

nﬂ(bh ce 7b2m—1) = Eﬂ—[Sbl, .. .Sbl_l,Sbl,S. . .bgm_l,S]

T 9
= 77(E7r1 [blS, te Sbl*l]) ' E7r2[blS, cee 7b2m715]

Thus

E[Sbybyp1S] =) > N(Ery (015, ..., Sbok-1]) - Ery[bokS, - . ., ban-15]
k=1 7['1€N02(2(k—1))
m2eNCa(2(m—k))

n( > Er [b1S, ..., Sby1]) - > E,[borS, ..., bam-15]
1 7r1€NCg(2(k—2)) WQENCQ(Q(m—k))

n(E[b1S+Sbag_1]) - E[bogS++Sboy-1S].

s

k

s

T
n

Consider now the operator-valued Cauchy transform (on the base level)

G:=Gs:H"(B) > H (B); 20 G(2)=E[(z-9)"].
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For large ||z| we have

G(z)=z"" ) Bl(Sz"1)™]

gt > El(5:1)™"]
= +Z -1 Zlkz:ln( SZ 1)2(k 1)]) lE[(Sz—1)2(m—k)]
= : (Zz [(Sz71)2(=D) ) ( i}::_oz ) (Sz‘1)2(m‘k)])
=21+ 'n(G(Z))G(Z),
or equivalently
2G(2) =1+n(G(2))-G(2). (6.2)

So we conclude: G(z) satisfies for large | 2| the Equation (6.2); by analytic extension
it must then satisfy (6.2) also for all H*(B).
The same calculation and arguments work also for all matricial amplifications of

G.

6.4 Solution of the equation for the semicircle

Remark 6.5. (1) In the case B = C and the normalization 7n(z) = z (z € C) —
corresponding to ¢(S?) = 1 — we get the quadratic equation for the Cauchy
transform Gg: H*(C) - H=(C) of a scalar-valued semicircle:

2G(2) =1+ G(2)> (6.3)

This can be solved explicitly as

z+Vz22 -4
G(Z) - Tu
where we have to choose the “-” sign, since we have for Cauchy transforms
lim, o iyG(iy) = 1; see Remark 4.12.
From this explicit form for the Cauchy transform one can derive then via the
Stieltjes inversion formula the semicircle density.
Note that of the two solutions of (6.3) only one, namely G(z), lies in the right
space H=(C), the other solution is in H*(C).
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(2)

(3)

How can we deal with (6.2) for general B and n. Note first that (6.2) is, in
the case B = M,,(C), actually a system of quadratic equations for the entries
of the n x n-matrix G(z). There are no explicit solutions nor a general theory
for such systems.

Usually there can be many solutions of such equations; we are, however, in-
terested in a solution which lies in H=(B). To get an idea, consider the very
simple example: B = My(C), n=id, z = 21 ® 25 with 21,29 € C and we are just
looking for solutions of the form G(z) = w = w; ® wy with wy,ws € C. Then
(6.2) decouples into

zlw1:1+wf, 22w2=1+w§.

Hence we have two solutions for w; and two solutions for ws:

2 £/28 -4 ., E\/z-4

+ _
wy = ) wy = 9

This yields four possible solutions for w, of which only w;@w; is in H=(M;(C)).
We want to show that this is true in general: of the many possible solutions
there is exactly one in H=(B).

The idea to see this is to rewrite the Equation (6.2) as a fixed point equation:

2G(2) =1+n(G(2))-G(z) <= 2=G(2)" +n(G(2))
< G(2)=[z-n(G(=)]™,

i.e., with F, :ww~ [z-n(w)]™! we have that G(z) is a fixed point of F..

To see the existence and uniqueness of the fixed point, F, should be a con-
traction. For large z (i.e., small |27!|) this is true in operator norm. For
general z € H*(B) the operator norm does not work any more, but one gets a
contraction in an “analytic” metric. The following is a kind of general version
of the Schwarz Lemma or Denjoy-Wolff Theorem (for the lattter, see 5.6 and
Assignment 9 of Free Probability Lecture Notes). See also [Har, Kra| for nice
expositions around the Earle-Hamilton Theorem.

Theorem 6.6 (Earle, Hamilton 1968). Let D be a non-empty domain in a complex
Banach space X and let h: D - D be a bounded holomorphic function. If h(D) lies
strictly inside D — i.e., there is some € >0 such that B.(h(x)) c D whenever x € D —
then h is a strict contraction in some (namely, Carathéodory-Riffen-Finsler) metric
p, and thus has a unique fixed point in D. Furthermore, there is a constant m > 0
sucht that one has for all x,y € D that p(x,y) > m|x —y|, and thus (h"(x0))nen
converges also in norm, for any xq € D, to this fized point.
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We want to apply this to our fixed point equation for the semicircular distribution.
In the next proposition we check that the assumptions of the Earle-Hamilton The-

orem are satisfied in this case. We follow here the original work of Helton, Rashidi
Far, Speicher [HRS].

Proposition 6.7. Let B be a unital C*-algebra and n: B — B a positive linear map.
For fized z € H*(B) we define the map

F.iwe Fo(w) = [z - n(w)] ™

Then we have
(i) F,: H(B) > H(B).
(ii) F, is bounded, with

|F.(w)] < [(Tmz)™! for all we H™(B).
(1ii) For R>0 we put
Hy(B) ={we H (B) | |w] < R}.
Then, for R> |(Imz)~!||, we have that F,(Hp(B)) lies strictly inside Hp(B).
Proof. (i) For w e H=(B) we have, by the positivity of n, that n(w) € H=(B), and
thus —n(w) € H*(B). But then we have, for z € H*(B), that also z —n(w) €
H+*(B). Taking the inverse moves us then into H-(B).

(ii) In the proof of Theorem 4.5 we have seen (put X = 0 there) that |27 <
[(Tm 2)~1| for z € H*(B), and thus also

Iz = n(w)] ™ < |[Tm(z = n(w))] .

In order to estimate this further, note

Im(z -n(w)) =Imz-Imn(w) >Imz >0,
S
<0
which implies
0< [Tm(z - ()] < (Im 2),
and thus finally

[[Tm(z = n(w))] ] < [ (Tm 2) 7.
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(ili) Note that (ii) shows that for R > |(Im 2)~!| we have F. : H,(B) - Hp(B). We
have to see that F,(w) stays away from the boundary of H;(B). For the part
|w| = R this is clear, there it stays away at least by an amount R— |(Im z)~!.
In order to see that it also stays away from the “real axis” we need an estimate
for Im F.(w), uniform in w € Hy(B). We have

I F.(w) = %[Fz(w) ~ Fa(w)"]

- Ry [P R

=Im(z*-n(w)*)<Imz*

<F(w) -Imz*- F,(w)
=-F,(w) -Imz- F,(w).
Let us write the last term, without the minus-sign, in the form
F.(w)* - Tmz- Fo(w) = [F.(w)™ - (Im2) ™ Fy(w)*] .
We estimate now
Fo(w)™ (Im2)™" Fo(w)™" < [ Fo(w) ™ * - [(Imz) 7] - 1
= [z =n(w)[*- [ (Imz) =] -1
<zl + Il Jwl)?- | (Im =)~ -1
<(lzl +nl- R)*- | (Tm 2)~"] - 1.

and thus, by taking the inverse and by noting that F,(w)=!-(Imz)=!-F,(w)*!
is positive:

1
1.
[nll- 7)?- [ (Tm 2)~]

Putting everything together gives then the wanted estimate

F.(w)*-Imz-F,(w) > T+

1
_ -1,
(=20 lnll - B)2 - [[(Tm )1

which is independent of w e H=(B).

Im F,(w) <
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Theorem 6.8 (Helton, Rashidi Far, Speicher 2007). Let B be a unital C*-algebra
and n : B - B a positive linear map. For fized z € H=(B) there exists exactly one
solution w e H=(B) to

zw=1+n(w)- w. (6.4)

This w s the limit of iterates w, = F*(wqy) for any wy € H-(B). Furthermore, we
have that
1
. 1
(=l + Il - [ (T 2) =)™ (I 2)

Proof. By the Earle-Hamilton Theorem 6.6, each Hy(B) contains, for R > |(Im z)~1|,
exactly one fixed point of F}, i.e., a solution to (6.4). (Note that our map F is holo-
morphic.) For any wy € H~(B) we choose R such that wy € H,(B) (i.e., R > |Jwol|),
then Earle-Hamilton guarantees that F7*(wy) converges in Hy(B) to w. O

|w| < [(Tm 2)7Y| and Imw< -

Remark 6.9. (1) Clearly, this solution w from Theorem 6.8 must be the value G(z)
of the Cauchy transform of our operator-valued semicircular element S with
covariance 1.

(2) The linearity of 1 is not essential for the arguments; one can generalize Theo-
rem 6.8 in the same way to the case where n: H*(B) - H*(B) is an analytic
and bounded map.

(3) The theorem does not give estimates for the speed of convergence. In particu-
lar, for small Im 2, the convergence can be very slow. One can usually improve
this by taking averages of the iterates. For example, replace w — F,(w) by
w G, (w) = tw+lF,(w). G, has the same fixed point as F, and maps Hy(B)
strictly into its interior. Thus, by Earle-Hamilton, sequences (G?(wg))nen
converge also (and usually faster) to the wanted fixed point of F.
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7 Matrices of Semicirculars and

Matrix-Valued Semicirculars
(and Block Random Matrices)

Here we want to be a bit more concrete about the relation between matrices of free
semicirculars and matrix-valued semicircular elements. We will here also encounter
the idea that we can consider our matrices both as scalar-valued and as operator-
valued elements. Understanding the relation between these two points of view will be
crucial for applications of operator-valued free probability to random matrix models
with some more structure, like block matrices.

7.1 Matrix-valued semicirculars

Remark 7.1. In Remark 6.3 we have seen that matrices of free semicirculars are
matrix-valued semicirculars. We restrict here to the special case where B = C, i.e.,
the entries of our matrices are scalar-valued free semicirculars. Let us first give the
precise statement for this.

Proposition 7.2. Let (A, @) be a C*-probability space and Sy, ...,Sq be free stan-
dard semicirculars (i.e., p(S?) =1). Forn > 1 and selfadjoint by, ..., by € M,(C) we
consider

Si=b®8S1++b;®S;¢ M,(C)® A=M,(A).

Then S is in the matriz-valued C*-probability space (M, (A), M, (C),id®y) a matriz-
valued semicircular element with covariance

d
n: M,(C) - M,(C) given by n(b) = > b;bb;.
=1

The proof of this is an assignment, Exercise 21.
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7.2 Treating matrix-valued semicirculars as
scalar-valued variables

Remark 7.3. (1) We are now, however, interested in S as a scalar-valued ran-
dom variable in the C*-probability space (M, (A),tr®y), i.e., instead of the
operator-valued Cauchy transform

Gs: H'(M,(C)) » H-(M(C)), b Gs(b) =idep[(b-5)"]
we need the scalar-valued Cauchy transform
g9s: H*'(C) > H(C), 2w gs(2) =trep[(b-95)7"].
Note that for z € C we clearly have
9s(2) = tr[Gs(z-1)].

So if we can calculate Gg, we can from this also get gs.

(2) Note that being semicircular on an operator-valued level does in general not
imply to be semicircular on a scalar-valued level. Let us check this in the next
example.

FExample 7.4. Consider, for a, 3 € R,

faSi 0 ) [a O 0 0
s (13 005 Yo+ 2 %)es.
Then S is for all «r, f an My(C)-valued semicircular element. However, on the scalar
level we have the second moment

tr0p[5%] = 5 (a%0(52) + B(59)) = (0 + )

and if S is semicircular, then its fourth moment must be given by twice the square
of this, i.e., by 2(tr®p[S?])? = (a2 + $2)?/2. On the other hand we can calculate
the fourth moment directly as

trog]S*] = S (a*e(51) + Fa(51) =t + 5

But o + % = (a? + 42)?/2 if and only if |o| = |3|. Thus in general, semicircularity is
not preserved; but there are special cases where it is.
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Theorem 7.5. Consider unital C*-algebras D c B ¢ A with conditional expectations
Eg: A— B and Ep : A — D which are compatible in the sense that Ep o Eg = Ep.
Consider a B-valued semicircular element S € A, with covariance n: B — B with
n(b) = Eg[SbS]. If n(D) c D, then S is also a D-valued semicircular element, with
covariance given by the restriction of n to D.

FExample 7.6. Before we prove this let us reconsider Example 7.4; there D = C,
B=My(C), Ep =y, Eg=id®yp, and n: B - B is given by

bir b1z —id® bi1a2S?  b1aa 3515, _[o*bn 0
g ba1  ba 14 bo1BaS25, 5225253 0 52522 '

To check that (D) c D we just have to see that n(1) € C; but

2
77((1) (1]): (06 502) eC-1 if and only if a? = (2

One might note that 7 maps always into diagonal matrices D, and thus in this case
S is always a D-valued semicircular.

For another example of the application of Theorem 7.5 see Exercise 22.
Proof of Theorem 7.5. We have the Cauchy transforms
G(b) = Eg[(b-S)"] for be H*(B)

and

g(d) = Ep[(b-5)7"] for d e H*(D).
Note that H*(D) ¢ H*(B) and that

9(d) = Ep E[(d - 5)™'] = Ep[G(d)].

[ S —
-G(d)
The main claim is to see that
G(d) €D for all d e H*(D); (7.1)

then we have that g(d) = G(d) for all d € H*(D) and the equation

bG(b) =1+n(G(b))-G(b)  (be H'(B))
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gives for b=d e H*(D):
dg(d) = 1+n(g(d)) - g(d),

which shows that g is the Cauchy transform of a D-valued semicircular element with
covariance 7)|p.

So it remains to prove (7.1). We know, by Theorem 6.8, that we get G(d) € H=(B)
as the limit of iterates w, = F}(wy) for arbitrary wy € H=(B), with Fy(w) = (d -
n(w))~!. Now note that since n maps D to D, the map Fy also maps D to D; hence
if we choose wg € H-(D) c H-(B) (as we are free to do), all iterates w,,, and thus
also their limit G(d), are in D. O

7.3 Operator-valued semicirculars as limits of
block random matrices

Remark 7.7. Note the relevance of this for random matrices. If Xl(N), . ,XCEN) are
independent Gaussian N x N random matrices, then we know (see Chapter 6 of the
Free Probability Lecture Notes) that for N — oo

(XML XY 5 (S, 8)
in distribution. But this implies that for N — oo
b1®X1(N)+'--+bd®XC(lN) —>S=b1®51+"-+bd®5d

in distribution with respect to tr, ® try and tr, ®p, respectively. The matrices
on the left side are nN x nIN block random matrices, considered as scalar-valued
random variables. Thus the scalar-valued distribution of S gives us the asymptotic
eigenvalue distribution of the block matrices. See Exercise 20 for an example of this.
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8 Polynomials in Free

Semicirculars and Linearization

Going over to matrices over a non-commutative algebra gives surprising flexibility
in dealing with problems in the algebra. In particular, one can rewrite non-linear
problems in the algebra into linear problems in the matrices. This linearization
idea has tremenduous impact in our context; it allows to reduce the calculation of
polynomials in free variables to the calculation of operator-valued free convolution.
We follow here quite closely the presentation in [HMS, MSp].

8.1 The idea of linearization

Remark 8.1. (1) In Proposition 7.2 we saw that we can deal with linear matrices

S=b®S5;++b;® 5, (bl,...,bdGMn(C))

in free semicirculars Si,...,5,;. Note that we can also consider “affine” matri-
ces by adding a constant by ® 1 = by € M,,(C), since this gives only a shift in
the argument of the Cauchy transform:

Grors(b) = id@p[ (b~ (bo +5)) ] = Gs(b—bo).

Since we consider selfadjoint random variables we need by = b; and thus we
have

Im(b-by) =Imbe H*(M,(C)).
So we can calculate Gg(b—by) (at least numerically) and from this also the
scalar-valued Cauchy transform

Gho+s(2) = tr[Grors(z-1)] = tr[Gs(z-1-bg)].

In Corollary 5.15 we saw that also for arbitrary selfadjoint polynomials p €
C(x1,...,x4) the distribution of this polynomial applied to our free semicircu-
lars, p(Si,...,Sq), is uniquely determined; however, up to now it is not clear
how to calculate this. We will now see that we can do this by relating this
problem with a corresponding problem in affine matrices.
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Example 8.2. Let us consider the example
p(z1,T2) = 2179 + Toxy + 273, ie., P :=p(S1,S55) = 515 + 8551 + S2.

Note that P = P*. The distribution of P is given by its Cauchy transform Gp(z) =
o[(z=P)7t], for z € H*(C). We lift the problem of calculating the inverse now from
the ground level C to matrices by finding there a factorization of P into affine terms

) 0 -1 S1
ez (Y90
Let us denote

1 -1. 0 -1 . Sl
v ges) 0= (5 ) ve(sTy)

then we have P = -UQ~'V, where U,Q,V are affine in S; and Sy. This does not
directly give a factorization for P!, since U and V are not invertible, but we get a
factorization of a lifted version of z — P into invertible factors:

LG D )

Since the first and third term are always invertible

1 A (1 -A 10y (1 0
o) -6 7)) ()
we have
(z-P)* 0\ (=P 0o\ (1 o0\ (=z -U\ (1 UQ"
) N I R A A R

If we put
0 U z 0
= (V Q)? A(Z) = (0 0)7

((z —OP)‘1 _g_l):([(A(z) _*p)_l]u i)

(where [A];1 denotes the (1,1)-entry of the 3 x 3-matrix A), i.e.,

(== P)" = [(A(2) - P) ",

o

then we have
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and thus

Gp(2) = ¢l(z = P) 1= o{[(A(2) = P) "o} = {id®p[(A(z) - P) ']}, -

Gp(A(2))

Note that
0 Sl % + SQ
P= S1 0 -1
248 -1 0

is an affine matrix in free semicirculars, thus an M;(C)-valued semicircular shifted
by a constant, for which we can calculate its M3(C)-valued Cauchy transform G (b).

Note also that
z 00
A(z)=10 0 0
000

is not in H*(M3(C)), so our theory from Chapter 6 for solving for Gx(A(z)) does
not apply directly. But since, by the above calculation, A(z) — P is invertible, the
function G is holomorphic, hence continuous, in a neighborhood of b = A(z) and
thus we have

z 0 0

Gp(A(2)) =limGp(Au(2)), where A(z):=0 i 0 28 A(2).
o 0 0 ie
| —

eH"(M3(C))
for alle >0

8.2 Rigorous theory of linearization
Remark 8.3. The main ingredient in the above calculation was that we can factorize
our polynomial as P = -UQ~'V, with affine U, Q, V. This works for all polynomials

and is actually independent from having semicircular elements as variables. Let us
now do the general case on the level of formal variables, C(xy,..., x4).

Definition 8.4. Let p e C(xy,...,z4) be given. A matrix

p= (2 Z) € M,(C{xq,...,24)),

where
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o nelNj

o qge M, 1(C(xy,...,x4)) is invertible as a matrix over polynomials,
o ueM ,(C{zy,...,24)) is a row and v € M, 1(C(z1,...,24)) is a column,
is called a linearization of p, if the following two conditions are satisfied:
(i) p is an affine matrix in xq,...,x4, i.e., there are by, by,...,by € M,(C) such
that p=bg®1+b; @11 + -+ + by ® x4;
(i) p=-ugtv.

Theorem 8.5. For any polynomial p € C(x1,...,x4) there exists a linearization. If
p s selfadjoint, then there is also a selfadjoint linearization.

Remark 8.6. Such linearizations are not unique; it is interesting to find minimal
ones, where the matrix size n is as small as possible. Our algorithm in the following

proof will not produce minimal realizations in general.

Proof of Theorem 8.5. (1) For monomials we have linearizations:
(i) for degree 0, p=a (e C)

]3:((1) _al)e]\/[g((C); as a=-a-(-1)7'-1;

(ii) for degree 1, p = az;

ﬁ=(? Oﬁi)EMz(C); as o =—ax;- (-1)7 - L

(iii) for degree k> 2, p = ax;,---x;,

0 0O ... 0 0 oax
0 0 Ce 0 Ly -1
. 0 0 ...z -1 0
p=1 . . e Sk
0 z,, - 0 O 0
z, -1 ... 0 O 0

to be concrete, consider for example k = 3:

0 0 axy
0 Lig -1
Liq -1 0
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note that matrices corresponding to ¢ are always invertible
v, -1\ (0 -1
-1 0 -1 -y,

0 -1 0
- (O O./iCil) . (_1 —ZEZ'Q) . ($Z3) = AT, TjgTig.

Us

and we have

(2) If we have linearizations (0'

) for polynomials p; (i = 1,...,7), then their

sum p; + -+ + p, has a linearization

0 wup uy ... U,
V1 41 0 AN 0
(%) 0 q2 ... 0
v, 0 0 ... ¢

Thus we can build linearizations for any polynomial out of linearizations for
its monomials.

*

(3) If p has a linearization (2 Z), then p* has a linearization (l?* Z*) If p=p*

we want to take a linearization of p = 3 (p+p*). The construction in (2) however
does not give a selfadjoint p. Instead we take

1 0 u v*
5 u* 0 ¢q*
v q 0

8.3 Linearization and Cauchy transforms

Remark 8.7. The linearization and the calculations for expressing the Cauchy trans-
form of P in terms of the Cauchy transform of P are independent of the concrete
nature of our random variables, neither freeness nor being semicircular is important.
Thus we have the following.
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Theorem 8.8. Let (A, p) be a C*-probability space and consider selfadjoint X,. . .

€ A. For a selfadjoint polynomial p € C{xq,...,xq) let
P=bo®1+bi @z ++bg®xa,  with bo,br, ... bae My(C),
be a selfadjoint linearization of p. Put P:=p(Xy,...,Xy) € A and
P=p(X1,...,. X)) =bp®@1+b ® X1 +...by® Xy € M,(A).
Then we have for z € H*(C)

Gp(2) = [Gp(A(2)) i1 = Im[G p(A)) ]1a

with
z 0 0 z 0 ... 0
O EE T B EEE PY eI A (o))
00 .0 0 0 ... i

7Xd

Remark 8.9. Thus, in order to deal with polynomials of variables, we need to un-
derstand linear matrices in the variables. If the variables are free semicirculars we
understand linear matrices in them, as they are operator-valued semicirculars. But
how about general free variables: If Xi,..., Xy are free, what can we say about

X=by®1+b;® X ;+--+b;® X;. Note
(i) by ® 1 is just a shift of the argument in Gx, thus easy to deal with;

(ii) the operator-valued Cauchy transform of b; ® X; is determined (theoretically

and numerically) in terms of the Cauchy transform of Xj;

(iii) if Xy,..., Xy are free in (A, ), then by ® X1,...,b; ® X, are, by Proposition
5.7, free in (M, (A), M,(C),id ®y); hence we have to understand how to deal
with sums of free variables on an operator-valued level — i.e., we need to have

a closer look on how to describe operator-valued free convolution.
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9 Combinatorial and Analytic
Description of Operator-Valued
Freeness: Free Cumulants and
R-Transforms

Up to now we looked on moments and Cauchy transforms. As in the scalar-valued
case it is advantegeous to go over to cumulants and R-transforms. Much of the
theory is the same, modulo “respecting the nesting”, as in the scalar-valued case,
see Chapters 3 and 4 of Free Probability Lecture Notes. We we are not going to
give proofs of the operator-valued statements, but we urge the reader (for example,
in Exercise 24) to check that the scalar-valued arguments are not affected by the
requirement that we now have to respect the nesting.

9.1 Operator-valued free cumulants

Definition 9.1. Let (A, B, E') be an operator-valued probability space. We denote
by FE,, for n € N, the B-balanced map
En : An e Bv (a17 s 7an) = En(ab az,. .. 7an) = E[ala@"'an]?

and by E,, for all n € N, 7 € NC(n), the corresponding multiplicative map E; :
A" - B, for m € NC(n); see Definition 5.10. Then we define the corresponding
(operator-valued) free cumulants k, : A" - B by

Kn(ar,...,an) = > p(m1)Ex(a,...,a,), (9.1)

weNC(n)
where p is the Mobius function of NC'(n).

Remark 9.2. The k,, are also B-balanced and with their multiplicative extension the
Equation (9.1) is equivalent to

Elai--a,] = Ey(ay,...,a,) = Z Kr(ai,...,a,).
meNC(n)
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Example 9.3. (1) For n =1 we have
Elai] = k,(a1) = k1(a1).
(2) For n =2 we have

Elayas] = K (a1, a2) + K, (a1, az)
= Ko(ay,az) + k1(ay)k1(az)
= Kka(ay, as) + Elai]|Flas],
and thus
Iig(al, CLQ) = E[alag] - E[al]E[GQ] .

——— N———
B \(a1,02) E (a1,a2)

(3) For n =3 we have
Elayagas] = k| (a1,a2,a3) + k| (a1,az,a3)
+k, (a1,02,a3) + K, (a1,a2,a3) + K, | (a1,a2,a3).
The interesting term is here
K, (a1, az,a3) = Ka(arki(az), as)
= E[alE[CLQ]ag] - E[alE[ag]] . E[ag]
= E[alE[ag]ag] - E[al} . E[ag] . E[ag].

This leads in the end to

I€3((I1, a9, CL3) = E[alagag] - E[al] . E[CLQCLg] - E[al(lg] . E[ag]
- E[a1E[as]as] + 2E[a1] - E[as] - E[as].

As in the scalar-valued case (compare 3.23 and 3.24 of Free Probability Lecture
Notes) one proves the following characterization of freeness.

Theorem 9.4 (freeness = vanishing of mixed cumulants). Let (A, B, E) be a B-
valued probability space and (K, )nen the corresponding free cumulants.
(1) Consider subalgebras B c A; c A foriel. Then the following are equivalent.
(i) The subalgebras A;, i € I, are free with respect to E.
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(i) Mized cumulants in the subalgebras vanish, i.e., kp(ai,...,a,) =0 when-
ever: n22; aje Ay, for j=1,...,n; and there exist 1 < k,l <n such that
ik 41
(2) Consider random variables X; € A fori € I. Then the following are equivalent.
(i) The random variables X;, i € I, are free with respect to E.
(i) Mized cumulants in the random variables vanish, i.e.,

’fn(Xilbla X,;2b2, e 7Xin,1bn—17 in) = 0
whenever: n > 2; iy,... i, € I; there exist 1 < k,1 < n such that iy, # i;;

and bl;"'7bn—1 ebB.

FExample 9.5. This yields then formulas for the calculation of mixed moments; those
formulas show that mixed moments of free variables are exponentially bounded, if
this is true for of of the variables — thus providing the missing argument for our
proof of Theorem 5.14.

As a concrete calculation, consider for X and Y free the following mixed moment:

E[XYXY]= 3 k(X,Y,X,Y).
meNC(4)

Because of the vanishing of mixed cumulants in X and Y only non-crossing = with
7w <L will make a contribution; so we can continue with

E[XYXY]=k (XY, X,Y)+r, (X,Y,X,Y)+r  (X,¥,X,Y)

= k1 (X) ko (YRU(X),Y) + ko (X1 (Y), X) - ki1 (V) + 51 (X) - 5y (V) - 51 (X) - 51 (Y)
= E[X]-(E[YE[X]Y] - E[YE[X]]- E[Y])

+(BE[XE[Y]X]- B[XB[Y]]- E[X])- B[Y]+ E[X]- E[Y]- E[X]- E[Y]
= E[X]-E[YE[X]Y]+E[XE[Y]X] E[X]-E[X]-E[Y] - E[X] E[Y].

This recovers the formula from Example 5.3 (3).

Proposition 9.6. Let (A, B, E) be a B-valued probability space with corresponding
cumulants (Kp)nen. Consider, for n € N, random wvariables Xi,..., X, € A and
bi,...,bn_1 € B. Then we have

E[lelX2b2"'Xn—1bn—1Xn]
= >, ks( X1 E[b1Xo - Xjp-1bp-1], X B[bjy Xy Xjg1bjo-1]s -, X5, )

s=11=j1<ja<<js<n

x E[bj,bn1X,].
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9.2 Operator-valued R-transform

Theorem 9.7. Let (A, B, E) be a B-valued C*-probability space and X = X* € A.
Consider the following fully matricial functions on a uniform neighborhood of 0,
given via the coefficients in the power series expansion about 0:

o the Cauchy transform Gx given via Hx(z) = Gx(z7') by

0" Hx(0,...,0)§(bo, ..., b,) = E[bgXby--b,-1Xby]
o the R-transform Rx given by
0"Rx(0,...,0)f(b1,...,bn) = kns1(Xby, Xbg,..., Xb,, X)
Then we have that on suitable domains
2G(z) =1+ R[G(2)]-G(2), (9.2)
and G and R determine each other via (9.2).

Remark 9.8. (0) Note that R has a constant term, whereas H starts with the linear
term; on the base level we have the power series expansions, for z =be BB

Hy(b) =b+bE[X]b+bE[XbX]b+bE[XbXbX b+

and
Rx(b) = k1(X) + ko (Xb, X) + k3(Xb, X0, X) + -

(1) Note that with G = (G™),cy and R = (R(™ ).y, (9.2) means that there exists
R > 0 such that for each n € N we have

2GM(2) =1+ RW[GM™(2)]-G™(2) for z € M, (B) with |z| > R.
(2) For our applications to polynomials in Theorem 8.8,

GP(Z) = ?\I‘%[Gﬁ(Aa(z))]Ll’

we actually only need the base level n =1 of Gp.
(3) Since mixed cumulants in free variables vanish we have for free X, X5 that

I{n+1((X1 + Xg)bl, (Xl + XQ)bQ, cey (Xl + Xz)bn, (X1 + Xg))

= Kne1 (X101, Xabo,y oo, Xaby, X)) + K1 (Xoby, Xobo, . .., Xoby, Xo),
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and thus also
Rx,ix,(2) = Rx,(2) + Rx,(2) for | z| sufficiently small.

This allows in principle to express Gx,.x, in terms of Gy, and Gy,: fori=1,2
we calculate from Gy, its R-transform Ry, via (9.2), then we get easily the
R-transform of the sum, Ry, ,x, = Rx, + Rx,, and use again (9.2) (now in the
other direction) to get from this Gx,.x,. There is, however, a problem with
this, namely (9.2) can usually not be solved explicitly and there is also no good
numerical algorithm for dealing with (9.2). Hence, as in the scalar-valued case,
we will rewrite the R-transform approach into the “subordination” language.
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10 Operator-Valued Free
Convolution via Subordination
Function and the Distribution
of Polynomials in Free

Variables

The subordination description of operator-valued free convolution yields as in the
scalar-valued case algorithms which can be analytically controlled. Combining this
with the linearization idea solves then the problem of calculating the distribution of
polynomials in free variables, which in turn can be used to calculate the asymptotic
eigenvalue distribution of polynomials in random matrices. We follow here the
presentation from [MSp], by refering the proof of the main statement to the original
paper [BMS].

10.1 Subordination for operator-valued free
convolution

Remark 10.1. (1) We want to describe X; + Xy, for X; and X, free, in a subordi-
nated form via

GX1+X2(Z) = GX1 (wl(z))> and GX1+X2(Z) = GX2 (wQ(Z))

for some subordination functions wy,ws. Let us check, on a formal level, the
properties of those (compare also 5.1 of Free Probability Lecture Notes):

wi(2) = G5, (Gxyexa(2)).
Note that zG(2) = 1+ R[G(2)] - G(z) means that (for z = G<">(b)):
G<P(b)-b=1+R(b) b, ie., G<(b) =b7' + R(b).
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Put now G; = Gyx,, G2 =Gx,, G =Gx, +x,, and the same for R. Then we have

wi1(2) =Gy (G(2)) =G(2) T+ Ri(G(2)) and wq(2) = G(2) ' + Ry(G(2))

and thus
w1(2) +wa(2) =2G(2) ™ + Ri(G(2)) + Ry(G(2))
~R[G(2)]=2-G(2)
=2+G(2)!
=2+ G (w(2)?
=z+ Fi(wi(2)),
and thus

wa(2) = 2+ F1(w1(2)) —wi(2),

hi(w1(2))

where we put
Fi(2)=G(2), and hi(2):=F1(2)-2=Gi(2)"' -z

So we have
wa(2) = 2+ hi(wi(2))

and, by symmetry,
wi(2) = 2+ ha(we(2)).

Inserting the first equation into the second gives finally

wi(z) =2+ ha(z + hi(wi1(2))).

This is a fixed point equation for w;(z), which can be used for calculating
wi(2) via iterations.

The crucial point is that the fixed point equation can be used to define w;(2)
(and, in the same way, wo(2)) not just on some suitably chosen domain, but
always on all of H*(B). To show the convergence of the iterates on all of
H+*(B) one uses again the Earle-Hamilton Theorem.

To make the formal calculations above rigorous is much harder than in the
scalar-valued case (in particular, as the involved domains are harder to con-
trol), but it can be done. We only give the final result from [BMS]. It would
be nice to find a simpler, more streamlined proof of this theorem.



Theorem 10.2 (Belinschi, Mai, Speicher 2017). Let (A, B, E) be an operator-valued
C*-probability space and consider selfadjoint Xy, Xy € A which are free with respect
to E. Then there exists a unique pair of Fréchet analytic maps

wy,wy : HY(B) - H*(B)

such that
(1) Imw;(2) >Imz for all ze H*(B) and j =1,2;
(ii) for all z € H*(B)

Fi(wi(2))+2z=Fy(wa(2)) + 2 = wi(2) + wa(2);

(1ii) for all z € H*(B)
Gr(wi(2)) = Ga(wa(2)) = G(2).

Moreover, if z € H*(B), then wi(z) is the unique fized point of the map f,: H*(B) —
H*(B), given by
fo(w) = ha(hy(w) + 2) + z;

and wi(z) = lim, o fH(w) for any w e H*(B). The same statements hold for ws,
where f, is replaced by
w > hi(ho(w) +2) + 2.

10.2 Distribution of polynomials in free variables

Remark 10.3. This can then be used, together with the linearization idea, to compute
numerically distributions of polynomials in free variables. This has relevance for the
asymptotic eigenvalue distribution of random matrices. Assume that X 1(N), ce XCEN)
are N x N random matrices which are asymptotically free, i.e.,

N—oo

(Xl(N)w .- 7X55N)) - (Xla’ .. JXd)J

where X1,..., Xy are free. Then, for any polynomial p € C(z1, ..., z4), we also have

N—oo
p(XI, LX) p(X LX)

and the distribution of the limit can be calculated via linearization and operator-
valued free convolution.

Note the following typical situations for asymptotically free random matrices:

(i) independent GUE are asymptotically free;
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(ii) GUE are asymptotically free from deterministic (e.g., diagonal) matrices;

(iii) “randomly rotated” matrices are asymptotically free: for DgN), DéN) determin-

istic (e.g., diagonal) matrices and Uy Haar unitary N x N random matrices,
we have that DgN) and U NDéN)U ~ are asymptotically free; so, in particular,
asymptotically the eigenvalue distribution of p(D%N), U NDgN) Uy is given by
the distribution of p(Xi, X5) where X; and X, are free and M = 1, and
Hp = Hx,-

Ezxample 10.4. Let us compare, for the polynomial p(x,y) = zy + yz + 22, the distri-
bution of asymptotically free random matrices with the limit distribution, which we
calculate by our linearization and operator-valued convolution machinery.

(1) Consider first, for N = 4000, a GUE(N) matrix Ay and a deterministic diagonal

88

matrix Xy with 2000 eigenvalues -2, 1000 eigenvalues -1 and 1000 eigenvalues
1. We compare the histogram of the N eigenvalues of p(Xy, Ay) with the
distribtion (red curve) of p(X,S), where S and X are free, S is a semicircular
element and X has distribution px = i(25_2 +0_1+041).

0.16 T

012 B

0.1 b

<
0.06 - B

0.04 - b




(2) Consider now, again for N = 4000, two deterministic diagonal matrices X y and
Yn; Yy has 2000 eigenvalues 1 and 2000 eigenvalues 3; and X is the same as
before, i.e., a diagonal matrix with 2000 eigenvalues -2, 1000 eigenvalues -1 and
1000 eigenvalues 1. In addition we take now a Haar unitary random matrix Uy
and compare the histogram of the N eigenvalues of p(Xy, UnYyUj;) with the
distribution (red curve) of p(X,Y"), where X and Y are free, with distribution
px = 1(200+ 61 +6,1) and py = £(61 + d3).

0.6

0.5

0.4

0.3

0.2

0.1
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11 Distribution of Rational
Expressions in Free Random
Variables

The linearization idea is usually (i.e., in other contextes than free probability) used
for dealing with rational functions, not just polynomials. Thus it looks feasible to
try to extend our results to rational functions. We will follow quite closely [HMS],
where one can also find more information on the history of the linearization idea
and more details on non-commutative rational functions.

11.1 Linearization for non-commutative rational
functions

Remark 11.1. Recall the idea of the linearization of a polynomial. For a polynomial
P=p(Xy,...,X4) € A we need to find U,Q,V with
o U,Q,V are affine matrices in X1,..., Xy;
o () is invertible;
o P=-UQ'V.
Then the linearization P = (O u
Vi Q
Gp(z) = [Gp(A(2))]11- (11.1)
Question: Can we linearize more general “functions”?
Example 11.2. Note that in P = -UQ~'V the inverse shows up, which suggests that
we might also linearize inverses. Try the simplest case, P = X~1. We can write this
as

) knows a lot about P, namely

P=-(1)-(-X)™ (1),
ie, U=1,Q=-X,V =1, all 1 x1 matrices, and thus

~ (0 1
P= (1 —X) € My(A).
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(Note that P is here also selfadjoint!) If we assume that Q = —X is invertible,
then this satisfies all properties of our linearization and (11.1) allows to calculate
the distribution of X~! via the linear matrix P. (Of course, in this case of one
variable we would calculate the distribution of X~! form the distribution of X just
via ordinary function calculus.)

Note that in this case invertibility of () is not just an algebraic issue, which is
true for all p(X), but depends on the existence of p(X) = X! for the concretely
considered X. We have to be careful that the existence of P implies the existence
of all inverses which show up in our calculations. The basic ingredient for all this is
the following well-known formula.

Theorem 11.3 (Schur complement formula). Let A be a complex unital algebra.
Let matrices

aeMp(A), beMg,(A), ceMp(A), deM(A)

be given and assume that d is invertible in M;(A). Then the following are equivalent.

(i) (Z Z) € My (A) is invertible.

(i) The Schur complement a —bd~tc is invertible in My(A).
If those are satisfied, then we have

a b 71_ (a—bdte)y™t =
() ()
a b 1 bd'\[a-bdlc 0O 1 0
(c d):(o 1 )( 0 d)(d—lc 1)' (11.2)

Since the first and the third factor are always invertible, the invertibility of the left
hand side is equivalent to the invertibility of

a-bdtc 0
0 d)’
which in turn is equivalent to the invertibility of a — bd='c (since d is invertible by

assumption).
The formula for the inverse follows by taking the inverse of (11.2). ]

Proof. We have

Definition 11.4. Let r be a rational expression in the formal variables x1,...,z4.
A linear representation p = (u,q,v) of r consists of
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o an affine matrix ¢ in the variables x1,..., x4, of size n x n for some n € N,

o an 1 xn matrix u over C,

o and an n x 1 matrix v over C
such that we have for any unital algebra A and any Xi,...,X; € A: whenever
r(Xi,...,X4) makes sense in A (i.e., all inverses appearing in r must exist in A),
then q(X1,...,Xy) is also invertible in M,,(A) and we have then

r( Xy, ., Xg) = —ug(Xy,..., X5) M.

11.2 Distribution of non-commutative rational
functions

Theorem 11.5. Let r be a selfadjoint rational expression and p = (u,q,v) a selfad-
joint linear representation of r (i.e., u=v*, q¢=q*). Consider a C*-probability space
(A, ) and selfadjoint random variables Xy, ..., X4 € A such that r(Xy,...,Xy) is
defined in A (necessarily as bounded operator). Then, with

A 0 u
h= (U q(X17' s 7Xd)) ‘ Mn+1(A)7

we have for all z € H*(C)

Proof. Compare also Example 8.2. We have

z -u

AG) - R= (—v —q(X,, ... ,Xd));

by definition of linear representation, ¢(Xi,...,X,) is invertible; so, by the Schur
complement formula 11.3, A(z) — R is invertible if and only if

z—u(-q(Xy,..., Xg)) v=z2-7r(X1,...,Xy)
is invertible, and then
[(A(z) - }?)‘1]1,1 =(z-r(Xy,..., X))

Applying ¢ to this, and taking into account the continuity in £ as in Example 8.2,
gives the statement on Cauchy transforms. m
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11.6. Algorithm for linear representations. For every rational expression
one can build a linear representation according to the following algorithm.
(1) Scalars A € C and variables z; have respective linear representations

G (e 3)0)

(2) If (u1,q1,v1) is a representation of 1 and (ug, g2,v9) is a representation of ro,
then representations for r; + ro and for r; - r9 are respectively given by

(e (5 b)) 0 (5 5 (2)

(3) If (u,q,v) is a representation of r # 0, then
0 u 1
(02 %))

Proof. Let us just check (3). We have to see: if 771(X7,..., X,) makes sense (i.e.,
r(X1,...,X4) # 0 and invertible in A), then

is a representation of r~1.

CREN)
v o—q(Xq,...,Xq)

is invertible. Since r(Xj,..., Xy) makes sense, ¢(X,...,Xy) is invertible (by the
definition of a linear representation) and, by the Schur complement formula 11.3,
the matrix above is invertible if and only if —uq(Xy,...,Xg)v = r(X1,..., Xy) is
invertible; but this is the case by our assumption; and then we have, still by 11.3,

0 u 1) _[{o u - B
(1 0)(1) —Q(X1,...,Xd)) (O):[(v —q(Xl,...,Xd)) ]llzr(le--de) .

]

Ezample 11.7. Let us apply the above algorithm to r(x,y) = [x~! +y~1]~!. First, for
x~! and y~! we have the linearizations

0 0 1) (1 0 0 1\ (1
(1 0 0),]0 -z 1],{0 and (1 0 0),]0 -y 1|,]0]].
1 1 0/ \o 1 1 0/ \o
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which gives for =1 + y~! the linearization

(1 0010 0),

SO oo~ OO

o O O+

[ NeNeoNeoll

_ o O O oo

o O OO

O == O OO

Finally, the inverse [z~ + y~!]~! has then the linearization

(1 00000 0)),

SO =R OO+~ O

1
0
0
-1
0
0
0

0
0
x
-1
0
0
0

0
-1
-1

0

0

0

0

O O OO O

-1

SO = OO =

(=N elelNololollS
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12 Unbounded Rational
Expressions

Evaluating rational expressions in operators will typically lead to unbounded op-
erators. Here we will see that we can also say quite a bit about such a situation.
Actually, understanding what is going on there is crucial for getting a grasp on one
of the most basic regularity questions about non-commutative distributions: the
absence of atoms in the distribution of polynomials or rational functions of our op-
erators. The material here relies on the original work [MSY], where one can also find
more details about the algebraic description of non-commutative rational functions
as the “free skew field”, and the “fullness” of matrices in this context.

12.1 Going unbounded

Remark 12.1. Note that we have to restrict to X1,..., Xy € A for which (X, ..., Xy)
is defined in A, for a rational expression r. Up to now we considered this in a C*-
algebra A, which means that r(Xi,...,X,) has to exist in A, i.e., as a bounded
operator. Can we weaken this?

Example 12.2. Let X : 2 - R be a classical real-valued random variable, defined on
a probability space (2,2, P). When does Y := X! = 1/X make sense as a random
variable. Since our functions are defined only almost everywhere, we need

ux({0}) = P(X =0) = 0. (12.1)

If we consider X as multiplication operator on L2({2, P), then (12.1) says that the
kernel

ker(X):={f e L*(Q)| Xf =0}

is trivial, i.e., ker(X) = {0}. Under this condition, X! exists, but it might be an
unbounded operator, namely if 0 is in the spectrum o(X) of X.
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(1)

(2)

For example, let X = .S be a semicircular variable with distribution

3 I

HS = —e | .
-2 2

We can realize X as multiplication operator on the interval [-2,2]; i.e.,

(X)) =tf(t)  for feL*([-2,2] ps).

Then 0 € 0(S5) and S~ does not exist as bounded operator, but makes sense
as unbounded operator: (X-1f)(t) =t"1f(t) for f such that t » ¢~1f(¢) is in
L?([-2,2],us). Note that we only need injectivity of X — i.e., ker(X) = {0}
— to ensure “surjectivity” — i.e., that the image of X is dense, so that we can
invert it there. This is like for matrices, but of course is not true for general
infinite-dimensional operators.

Without injectivity we have no chance of making sense of X! even as un-
bounded operator. E.g., if px = 3(d + 1), there is no X-1.

12.2 Affiliated unbounded operators

Definition 12.3. Let M c B(H) be a von Neumann algebra. A densely defined
and closed unbounded operator X on H is affiliated with M, if for every unitary
Ue M (M'is the commutant) we have UX = XU. [Equivalently, in the polar
decomposition X = U|X| we have U € M and |X]| is affiliated with M, i.e., all
spectral projections of | X| are in M.] We write M for the set of operators affiliated
to M.

Ezample 12.4. (1) If M = B(H), then M consists of all unbounded densely defined

and closed operators on H; for dim H = oo this is a nasty object without much
structure.

(2) If M = L>=(u), then M is the -algebra of all y-measurable functions.
(3) If M is a finite von Neumann algebra (i.e., it has a faithful normal trace 7),
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then the situation is as nice as in the classical commutative case or in the case
of matrices; namely, then M is a *-algebra and for X € M the inverse X~! € M
exists if and only if X is injective, i.e., ker(X) = {0}. [Those are results of
Murray and von Neumann.]



Remark 12.5. (1) Note that the case of a finite von Neumann algebra is relevant
for us; our C*-probability spaces (A, ) are usually W*-probability spaces
(M, 7) where M is a von Neumann algebra and 7 is a trace. In particular,
free semicirculars Sy, ..., Sy are living in a finite von Neumann algebra. More
general, limits of random matrices do so, since our ¢ as the limit of traces on
matrices is necessarily also a trace.

(2) If we are in a finite von Neumann algebra setting (M, 7), then we can replace
A in Theorem 11.5 by M and thus also treat r(Xy,...,Xy) which are de-
fined as unbounded affiliated operators. Via our linearization r = (u,q,v) this
requirement on the existence of r(Xi,..., Xy) as unbounded operator is the
same as the existence of the inverse of ¢(Xi,..., X ) as unbounded operator;
and then we still have r(X7,..., Xy) = —uq(Xq,..., Xg) 1.

(3) This raises the question whether there are operators Xj, ..., X, for which

(i) all rational expressions (X7, ..., Xy) are defined as unbounded operators
or
(ii) all inverses of q(Xj, ..., X ) exist as unbounded operators.

Note that we have to specify more precisely which r» and ¢ we mean.
(i) We have to make sure that we never invert 0; thus 07! is not allowed as
r; but there can also be more subtle versions of this, like

(yzz™t —y)™ or {x [z + (Tt -2) ] - xyx}_l.

(ii) The ¢ arising in our linearization algorithm are full in the following sense:

¢ has no proper rectangular factorization in matrices over C(xy,. .., z4),
ie. if we can factorize ¢ € M,(C(xy,...,24)) as ¢ = q1q2 with ¢ €
M, ,(C{z1,...,2q4)) and ¢ € M,,(C(xy,...,24)), then we necessarily
have r > n.

Note: if ¢ is not full, then ¢( X1, ..., Xy) = 1 (X1,..., Xq) @(X1, ..., Xq);
since ¢o( X7, ..., Xy) as an r x n matrix with r < n has no dense image, it
must also have a kernel, but then ¢(X7,..., X,;) has also a kernel. So we

need clearly fullness as a requirement for the considered q.

12.3 Realization of non-commutative rational
functions as unbounded operators

Theorem 12.6 (Mai, Speicher, Yin 2019). Let (M, 7) be a tracial W*-probability
space and consider Xq,...,Xqs€ M. Then the following are equivalent.

99



(i) For all meaningful rational expressions r # 0, the operator r( Xy, ..., Xy) exists
as unbounded operator in M and is invertible in M.
(ii) For all full affine q € M,(C{xy,...,24)) the operator q(Xi,...,Xy) € M, (M)
is invertible in M, (M).
(1ii) A(Xy,...,Xq) =d, which means the following: if we have finite rank operators
Ty,..., Ty on L*(M,7) such that Y [Te, Xi] = 0, then necessarily Ty = --- =
Ty=0.

Remark 12.7. (1) The equivalence between (i) and (ii) is more or less the lineariza-
tion idea; the relation between (ii) and (iii) relies on the following. Consider
linear and selfadjoint

R=0De1+bM e X+ +b? e X,

with 5O b1 .. b@ e M,(C) selfadjoint, and assume we have an element
[ = (fi,- -y fn), with f; € L2(M) for i = 1,...,n, in the kernel of R, i.e.,
Rf =0; then put

Ty = i b§f)<-,fi)fj (k=0,1,...,d).

i.j=1

Those Tg,T7, ..., Ty are finite rank operators and R f =0is then
k
To + Z Xka =0.
k=1
Since the T; are selfadjoint, we get by taking the adjoint
d
TO + Z Tka =0.
k=1

By taking the difference between those two equations we have then

d
S (T Xg - X, Ty,) = 0.

k=1

[Tk »Xk]

The theorem holds also for non-selfadjoint X;, the arguments are getting then
more involved.

(2) Tt is not obvious how to check whether A(Xy,..., X ) = d is satisfied or not.
However, there are a couple of free probability tools to decide on this, like
“maximality of free entropy dimension” or “existence of a dual system”. So we
know, for example, that A(Sy,...,Sy) =d for free semicirculars Si,...,S,.
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The above gives us directly some strong implications about the absence of atoms
in the distribution of polynomials, or even rational functions, of operators which
satisfy A(Xy,...,Xy) =d. Let us formulate this just for the most prominent case of
free semicirculars.

Corollary 12.8. Let (M, 1) be a finite W*-probability space and S, ...,Sq€ M free
semicirculars.

(1) For any meaningful rational expression r the operator r(Sy,...,Sq) € M ezists
as unbounded operator. If r = r* and not constant, then p,(s,, . s, has no
atoms.

(2) For any full g € M,(C(zy,...,24)) the operator q(S,...,Sq) is invertible in
M,(M). If q = q*, then piys,,...s,), with respect to (M,(M),tr, ®T), has no
atom at 0.
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13 Exercises

13.1 Assignment 1

In Examples 1.7 and 1.8 we saw two realizations of the most important non-com-
mutative distribution, namely n free semicircular elements. In this assignment you
are asked to familiarize yourself with the meaning of this. For the notion of freeness
you might watch Lecture 1 and 2 from the class “ Free Probability Theory” from last
term or read the corresponding Chapter 1 of the class notes. For random matrices
you might watch Lecture 17 and 18 or read Chapter 6.

Exercise 1. Let S1,...,S5, be the operators on the full Fock space from Example

1.7.
(i) Saying that each S € {S; | 1 < < n} is a semicircular variable means that
its odd moments are zero and the even moments are given by the Catalan
numbers, i.e.

1 (2K
2k+1Y _ 2kY —
e(ST*) =0 and (S )_k+1(k)'

Check the latter for small &, i.e. show that
() =1, (=2,  o(5)=5 = ©(5%) =14

(ii) Saying that the Si,...,S, are free means that special mixed moments vanish.
Show this for the following special cases.

¢(51525152) = 0, e((S1-2)(S3-5)(Sf-1)) =0.

Exercise 2. Let X i(N) be the independent Gaussian random matrices from Example
1.8. Familiarize yourself with computer programs (e.g., matlab) to produce random
matrices and calculate and plot histograms of their eigenvalues.

(i) Saying that, for each i, Xi(N) is asymptotically a semicircular variable means
that for large N the eigenvalue distribution of the NV eigenvalues of such a ma-
trix is close to the semicircle distribution. Check this by producing a histogram
for a 1000 x 1000 Gaussian random matrix.
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(ii) Saying that X I(N), . ,X,sN) are asymptotically free means that special mixed
moments (with respect to the normalized trace tr) are, for large N, close to
zero. Check this numerically for the following special cases:

tr(ABAB), tr((A*-2)(B%-5)(A%-1)),

where A and B are two independent 1000 x 1000 Gaussian random matrices.

13.2 Assignment 2

Exercise 3. Let (C, ) be a non-commutative probability space. Put
A:=M,(C), B:=M,(C), E:=idey: A-B.

(i) Show that (A, B, E') is an operator-valued probability space.
(ii) Assume that (C,¢) is a C*-probability space. Show that (A, B, E') is then an
operator-valued C*-probability space.
(iii) Show that in the C*-case we also have: if ¢ is faithful, then F is also faithful.
[Faithful means: F(A*A) =0 implies that A =0.]
(iv) Assume that ¢ is a trace, i.e., p(AB) = p(BA) for all A,B € C. Does then
also E have the tracial property? Give a proof or counter example!

Exercise 4. Let B be a unital algebra. Consider a collection of functions F' =
(F m)meN

Fo: My (B) > My (B), =z~ F,(2).
(i) We say that F' respects direct sums if

F Z1 0 _ le(zl) 0
mme O z9 B O FWQ(ZQ)

for all mi,mgy € N, Z1 € Mm1 (B), Z9 € MmQ(B)
(ii)) We say that F' respects similarities if

F.(52871) = SE,,(2)S™

for all m e N, z € M,,(B) and all invertible S € M,,(C).

(iii) We say that F' respects intertwininigs if for all n,m € N, z; € M, (B), 2, €
M, (B), T € M,,,»(C) (the latter are the n x m matrices with complex entries)
we have the following:

ZlT = TZQ — Fn(zl)T = TFm(ZQ)
Prove that [(i) and (ii)] is equivalent to (iii).
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13.3 Assignment 3

Exercise 5. Prove the second item from the proof of Lemma 3.6: Let f be a non-
commutative function, then we have for z; € M,,(B), 2o € M,,(B) that

Of (21, 22) f(w1 +w2) = Of (21, 20) w1 + Of (21, 22) fwa
for all wy,wy € M, ,,,(B).
Exercise 6. Let r € N and by, by, ...,b,.1 € B be given and consider the monomial f
f(2) =bgzbyzboz-+-b,2byy1.
(i) Show that f = (fin)men is a non-commutative function. (For this, also give

first the precise definition of all f,, : M,,(B) - M,,(B).)
(ii) Calculate the first and second order derivatives of f, i.e.,

Of (21, 2) fw, and O*f (21, 22, 23) f(wr, w2).

Exercise 7. For a non-commutative function f we define the mappings

O (2, y ) B, )
by
Z1 Wy 0 ce 0
0 Z9 W2 R 0
0 O Zg-1 Wk-1
0 0 0 2k

f(Zl) (9]‘(21,22)1111)1 82(21,22,z3)|j(w1,w2) 8k_1f(21,...,2k)H(U}l,...,wk_l)

Q f(ZQ) 8f(227:23)|1'l,U2 8k‘2f(z2,...,zk?u(wz,...,wk,l)
0 0 0 3f(2k—1,.2k) § wr—1
0 0 0 ey

Show that for each N € N we have the expansion

f(z+tw) = itkﬁk(z,...,z,z)H(w,...,w)+tN+18N+1f(z,...,z,z+tw)u(w,...,w)
k=0
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for meN, z,w e M,,(B) and t € C.
You can assume for this that 0%1(z,..., z) §(wy, ..., wk_1) is linear in the argu-
ments w;.

Hint: It might be helpful, to consider the matrix

z tw 0 - 0 0

0 2z tw - 0 0
y:: . . . .

0O 0 O z tw

0O 0 O 0 z+tw

and observe that

()

Exercise 8. Consider the C*-algebra M,,(C) of n x n matrices over C. We define
its upper half-plane by

H* (M, (C)) = {be M,(C)| 3¢ > 0: Im(b) > £1},

where Tm(b) = (b—0*)/(21).
(i) In the case n =2, show that in fact

b1y 512)

1 —
H+(M2((C)) = {(b21 by Im(bn) > O,Im(bn)lm(bgg) > Z_L|b12 - b21|2} .

(ii) For general n € N, prove: if a matrix b € M, (C) belongs to H* (M, (C)) then
all eigenvalues of b lie in the complex upper half-plane H*(C). Is the converse
also true?

13.4 Assignment 4

Let A and B be unital C*-algebras. A linear map ® : A — B is called completely
positive if all matrix amplifications ® ® id : M,,(A) - M,,(B) are positive.

Exercise 9. Show that the following are equivalent:
(i) ®: A — B is completely positive.
(ii) For each n € N and all ay,...,a, € A the matrix (®(a;a}))},_, € M,(B) is
positive.
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Exercise 10. Show that the transpose map on 2 x 2 matrices,

- MQ(C) N ]\42((2)7 (&11 a12) . (all G21)7

21 A22 Q12 A22
is positive, but not completely positive.

Exercise 11. Show that a positive conditional expectation F : A — B is completely
positive. What does this tell us about the complete positivity of states ¢ : A - C?

Hint: For this you can use the following characterization: A matrix (i)}, €
M,,(B) is positive if and only if we have

> bbbt >0 forall by,...,b, €B.

305 2
ij=1
Exercise 12. (i) Let (A, B, E) be a B-valued C*-probability space. Consider a
“constant” selfadjoint random variable b = b* € B ¢ A. Calculate the fully
matricial Cauchy transform of b.

(ii) Consider a C*-probability space (A, ¢) as a special case of an operator-valued
C*-probability space, where B = C. Consider a selfadjoint X = X* € A. Its
distribution px is then a probability measure on R. Express the fully matricial
C-valued Cauchy transform Gy in terms of px.

(iii) Assume that X; and X, are classical (thus commuting) bounded selfadjoint
random variables. Hence they have a classical distribution, which is a proba-
bility measure on R? with compact support. Consider now the 2 x 2 matrix

(X, 0
X_(O X2)~

The M;(C)-valued Cauchy transform of X, as a fully matricial function, should
now be determined in terms of this classical data. Make this concrete!

13.5 Assignment 5

Exercise 13. Show the following easy direction of Theorem 4.9: Let (A, B, E) be
an operator-valued C*-probability space and X = X* € A. Show that px € X%,

Exercise 14. Let ® : A - B be a completely positive map between two unital C*-
algebras with ®(1) = 1. Show that & satisfies the following kind of Cauchy-Schwarz
inequality: for a € A we have ®(a)*®(a) < (a*a).
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Hint: Consider the positive matrix

a*a a*
a 1
Exercise 15. Let X and Y be free in an operator-valued probability space (A, B, E).

Calculate the mixed moment E[ XbY by Xb3Y], for by, bs, b € B, in terms of moments
of X and of Y.

13.6 Assignment 6

Exercise 16. Let n: B — B be a completely positive map on the unital C'*-algebra
B. We want to construct an operator X which has 7 as its second moment; this will
be a kind of operator-valued Bernoulli element. For this we consider the degenerate

Fock space
F:=B® BzB c B(z),

equipped with the B-valued inner product
() : FxF - B,
given by linear extension of
(b + byxby, by + bywhy) := bbo + bin(biby )by
On F we define the creation operator [* by
I*b=xb [*byxby =0,
and the annihilation operator [ by
Ib=0, 1byxby = (b1 )bs.

Let A be the *-algebra which is generated by [ and by elements b € B acting as
multiplication operators on F. We also put

E:A- B, Aw E[A]:=(1,Al).

(i) Show that the inner product is positive and that [ and [* are adjoints of each
other.
(ii) Show that E is positive.
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(iii) Show that the second moment of the selfadjoint operator X = [+1[* is given by

n.
(iv) What is the formula for a general moment of X7

Exercise 17. Let S € A be a B-valued semicircular element with covariance n: B —
B. Fix neN and be M, (B). Consider now

) S ... 0
Si=b(1@S)b* =b|: i |b*eM,(A).
0 ... S

Show that S is an M,,(B)-valued semicircular element and calculate its covariance
fl: My (B) — M, (B).
Compare also Remark 6.3.

Exercise 18. Assume that we have Xi(l) (i € N) which are f.i.d., with first moment

zero and second moment given by a covariance 7, : B — B; and that we have X i(z) (1€
N) which are f.i.d with first moment zero and second moment given by a covariance
ny : B = B. According to the operator-valued version of the free central limit theorem
we know then that the normalized sum of the X i(l) converges to an operator-valued

semicircular element S; with covariance 7; and that the normalized sum of the Xi@)
converges to an operator-valued semicircular element Sy with covariance 7s.
Assume now that the X i(l) and X Z.(Q) are realized in the same C*-probability space

and are also free for each i. Then the joint distribution of (Xi(l),Xi(Q)) converges
to the joint distribution of the pair (S1,S2). Convince yourself that our argument
(from the Free Probability Lecture Notes, Assignment 3, Exercise 4) for the scalar-
valued case that freeness goes over to the limit remains valid in the operator-valued
case. Thus we get in the limit two semicircular elements which are free.

By repeating the calculation in our proof of the central limit theorem, Theorem
6.2, for this multivariate setting derive the formula for mixed moments of two free
semicircular elements S; and Sy, with covariance mappings 71 and 7y, respectively.

13.7 Assignment 7

Exercise 19. Let n: B - B be a completely positive map on the C*-algebra B. We
want to construct a semicircular operator X which has v, as its distribution. This
operator will be constructed on an operator-valued version of the full Fock space.
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The latter is nothing but our polynomials B(x), equipped with the B-valued inner
product

(bowbi by by, boxbiz Dbt} = Gnmblseyn (- (bin(b5bo) b1 )by ) b1
On this full fock space F we define again a creation operator [*, now given by
[*boxby---xby 1 == xbyxby---xbyy1,
and an annihilation operator [*, given by [b =0 and
Ibozbyx---xbyyy = (n(bo)b1)x---xbyyy.

Elements from B act on F by left multiplication. For A we take now the %-algebra
which is generated by [ and by all multiplication operators from B. Furthermore,
we put

E:A- B, Aw E[A]:=(1, Al).

(i) Show that the inner product on F is positive and that [ and [* are adjoints of
each other.
(ii) Show that E is positive.
(iii) Calculate explicitly the second and the fourth moments of X :=1+1*.
(iv) Prove that X =1[+[* has semicircular distribution v,.

Exercise 20. Let S; and Sy be two free (scalar-valued) standard semicircular ele-

ments and consider
[0 S5
s-(2 %)

We have seen in item (3) of Remark 6.3 that S is then an My (C)-valued semicircular
element whose covariance function 7 : My(C) - My(C) is given by

7 bir bia _ baz ba1
bo1 b2 bio bi1 +baa)
Refresh your memory on the relation between free semicircular elements and inde-

pendent GUE random matrices (for example, from Chapter 6 of the Free Probability
Lecture Notes). From this it follows that S is the limit of a random matrix

(0 Ay
XN_(AN BN)7
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where Ay and By are independent GUE random matrices. (If Ay and By are N x N
matrices, then Xy is of course a 2N x 2N matrix.) Since

g(z)=tr E[(z - S) '] =trG(z)

is the scalar-valued Cauchy transform of S with respect to troFE (tr is here the
normalized trace over 2 x 2 matrices), we can calculate the Cauchy transform g(z)
of the limiting eigenvalue distribution of Xy by first calculating the M (C)-valued
Cauchy transform G(z) of S and then taking the trace of this. For invoking the
Cauchy-Stieltjes inversion formula, we should calculate this for z close to the real
axis.

(i) We know that the operator-valued Cauchy transform (on the ground level)

G/(b) satisfies the matrix equation

bG(b) = 1+ 1(G(D)G (D).

This is true for all b € My(C), but we are here only interested in arguments
of the form b = z1, where z € H*(C). Try to solve this equation (exactly or
numerically) for z € H*(C) close to the real axis, so that you can produce from
this a density for the scalar-valued distribution of S.

(ii) Realize for large N the random matrix Xy and calculate histograms for its
eigenvalue distribution. Compare this with the result from (i).

13.8 Assignment 8

Exercise 21. Prove Proposition 7.2: Let (A,¢) be a C*-probability space and
Siy...,Sq € A free standard semicirculars (i.e., ¢(S?) =1). For n > 1 and selfadjoint
matrices by, ..., by € M, (C) we consider

S = bl ®Sl + .- +bd®5d € Mn(.A)
Then S is in the matrix-valued C*-probability space (M, (A), M,,(C),id ®p) a matrix-

valued semicircular element with covariance 7 : M, (C) - M, (C) given by

d
T](b) = Z bjbb]
j=1

Exercise 22. Let S;; for ¢ > j be free standard semicircular elements, and put
Sij = Sji. Furthermore, let ;; € R with ay; = aj; be given. Then we consider

S = (05 Sij)ij-1-
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From the previous exercise we know that this is an M, (C)-valued semicircular el-
ement. Give, by relying on Theorem 7.5, a criterium to decide whether S is also
a scalar-valued semicircular element. Use this to decide whether the following are

scalar-valued semicircular elements (for S, ..., Sg free standard semicirculars):
351 0 4S5, (351 655 45
S = 0 583 0 or S = 655 583 686
455 0 38, 455 6Sg 39,

Exercise 23. Check your conclusion from the last exercise numerically by producing
histograms, for N = 1000 or higher, of the eigenvalues of the matrices

3x™M o ax{M 3xM 6x N 4x (M)
XM= o s5xM o or XM =lex®™ 5xM x|,

axt™M o0 3x M ax{™ ex™M 3x M
where XI(N), . ,Xﬁ(N) are independent GUE(N) random matrices.

13.9 Assignment 9

Exercise 24. Prove the recursion between moments and free cumulants from Propo-
sition 9.6, by checking that the arguments from the scalar-valued case work also in
the operator-valued situation.

Exercise 25. Write down explicitly the linearization for a monomial of degree k = 5,
as given in the proof of Theorem 8.5 and check that this satisfies indeed all the
requirements for a linearization.

Exercise 26. Find a linearization p of the polynomial
p(x,y) = 2y* + y*x - y.
Bonus Questions:

Exercise 27. Calculate, via linearization and numerical calculation of the corre-
sponding operator-valued semicircular or of the corresponding operator-valued free
convolution, the distribution of p(X,Y) = XY?2+Y2X -Y, where

o X and Y are free standard semicircular elements

o X and Y are free random variables, with

1 1
Mx=§(50+51), /~LY=§(5—1+51)-
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Exercise 28. Realize X and Y, as given in Exercise 27, (asymptotically) via large
N x N random matrices Xy and Yy, and produce histograms of the eigenvalue
distribution of p(Xy,Yy). Compare the results with the calculations from Exercise

27.
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Some Off-the-Record Remarks

The preceding presentation has hopefully convinced the reader that we have devel-
oped powerful analytic tools to deal with non-commutative distributions and that we
have reached a deep understanding of many facets of this non-commutative world.

Let us reconsider what we have achieved so far. We have different ways to describe
non-commutative distributions, namely by

presenting concrete operators on Hilbert spaces

by describing the joint moments or the joint cumulants of the operators

by giving the Cauchy transform of the distributions

or by describing the classical distribution of all polynomials (or maybe even
all rational functions) in the operators

(e]
(e]
[¢]
@]

We consider a situation nice and well-understood when we have something to say
about all of those ways and usually progress comes from being able to switch between
the different points of view. In particular, we should be able to get our hands on
the Cauchy transform and distributions of polynomials.

In the case of free variables, so in particular for free semicirculars, we are in such
a nice situation.

Also if we move away from free variables many of our tools still apply and lead
to quite non-trivial statements. In particular, the statements about the abscence
of atoms in polynomials for operators which have maximal A are of this type and
in the continuation of such investigations we have many more qualitative results on
regularity properties of polynomials in such variables; like, for example, in the recent
work [BM] on Holder continuity of the distribution function of such polynomials.

In this chapter we want to point out that there are of course also situations where
the situation is not so satisfactory, and that we still hope for many more exciting
discoveries in the non-commutative territory.
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Is there anything special about distributions of
generators of non-embeddable von Neumann
algebras

By the refutation [JNVWY] of Connes embedding problem we know now that there
are tracial von Neumann algebras which cannot be embedded into the ultrapower
of the hyperfinite factor - or to put it more in our language: there are operators in
a tracial W*-probability space, whose joint moments cannot be approximated well
by moments of matrices. Up to now nobody was able to construct explicit examples
of such objects. Can our theory of non-commutative distributions say anything
about the distribution of such operators? Can we address them by any of the above
mentioned ways to deal with non-commutative distributions? Let us have a look.

o We do not know any concrete operators - that’s of course what we would like
to find!

o Neither do we know any candidates for joint moments or joint cumulants. Since
positivity is always an issue here, it is not only the problem of coming up with
moments which are unreachable for matrices, but one also needs arguments
guaranteeing that those are really moments of selfadjoint operators.

o Again, we would have to come up with a Cauchy transform which is not
reachable by Cauchy transforms of matrices (and which is indeed a Cauchy
transform, so satisfies Theorem 4.13). It’s hard to imagine how to get one
without writing it down concretely, or maybe at least writing down an equation
for it. Actually, a “random” Cauchy transform might do the job, but it is not
clear how to make this rigorous.

o This is even more unclear; without having knowledge about the Cauchy trans-
form it seems quite unlikely to get a grasp on other functions of the variables.

So, for the moment, there is nothing we have to offer from our non-commutative
disribution perspective and we can only hope for some more insights.

The ¢g-Gaussian operators

Since we had no place to start in the preceding case it is not surprising that we
could not say anything. So one might still have the hope that given some concrete
operators, of which we have at least some knowldege, we should have good chances
of saying something about its Cauchy transform and then mabye also the distribu-
tion of polynomials in them. Here comes an example which shows that even then
the situation is not so promising. This is a deformation of the situation of free
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semicirculars, but as they have no freeness in them we have problems with getting
a grasp on their Cauchy transform.

The g-Gaussian distribution, also known as g-semicircular distribution, was intro-
duced in [BSp, BKS] in the context of non commutative probability. Let us review
some basic definitions. In the following ¢ € [-1,1] is fixed. Consider a Hilbert space
‘H. The following is a g-deformation of the contructions from Example 1.7. On the
algebraic full Fock space @,50 H®" — where H° = CQ2 with a norm one vector €2,
called “vacuum” — we define a ¢g-deformed inner product as follows:

n

(hl Q- ® hn7g1 Q- ® gm)q = 5nm Z H(hﬁga(r)>qi(a)a

oeSy, r=1

where

i(o)=#{(k,))|1<k<l<n;o(k)>a(l)}

is the number of inversions of a permutation o € S,,. In [BSp] it was shown that this
inner product is positive definite, and has a kernel only for ¢ =1 and ¢ = -1.

The g-Fock space is then defined as the completion of the algebraic full Fock space
with respect to this inner product

Fi() - @A

n>0

In the cases ¢ =1 and ¢ = -1 we have to first divide out the kernel, thus leading to
the symmetric and anti-symmetric Fock space, respectively.
Now for h € H we define the g-creation operator a*(h), given by

a*(h)Q2=h,
a*(h)h1® - ®h,=h®h; ®--®h,,.

Its adjoint (with respect to the g-inner product), the g-annihilation operator a(h),
is given by

a(h)2=0,

a(h)hi ® @ hy =Y q" {h,heYh1 ® -+ ® hy_y ® hyy1 ® -+ ® By

r=1

[Never mind that we have switched here the convention whether the creation or
the annihilation operator gets the *. There are two conflicting traditions, one from
physics, where creation goes with the %, and one from operator theory where, in the
case q =0, the left shift [, and not its adjoint [*, is the basic isometry. Since we are
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now more on the physics side, our inner product has also become linear in its second
argument. |
Those operators satisfy the g-commutation relations

a(f)a*(g) —qa*(9)a(f) =(f,9)-1  (f.geH).

For ¢ =1, ¢ =0, and ¢ = -1 this reduces to the CCR-relations, the Cuntz relations,
and the CAR-relations, respectively. With the exception of the case ¢ = 1, the
operators a*(f) are bounded.

Let &1,...,&, be an orthonormal system of vectors in 4, then we consider the
selfadjoint operators X; := a(§;) +a*(&) (i = 1,...,n). For ¢ we take again the
vacuum expectation state p(A) := (Q, AQ). We are now interested in the non-
commutative distribution py, . x, of the operators Xi,..., X, in the C*-probability
space (B(F,(H)), ). We call this the (multivariate) q-Gaussian distribution. For
q = 0 it reduces to the non-commutative distribution of n free semicirculars. The ¢-
deformation has still some of the features of the ¢ = 0 case. First of all, by definition
we have nice and concrete operators with this non-commutative distribution. Also
the formula for mixed moments in free semicirculars survives the deformation and
one has the following g-deformed Wick formula: for any ¢ : {1,...,k} - {1,...,n}
we have

e(Xeqy - Xewy) = Y, ¢,

mePy (k)
w<kere

where cr(m) denotes the number of crossings of the pair-partition , i.e., the number
of pairs of blocks which have a crossing.

So, this looks quite good: we have a nice realization of the g-Gaussian distribution
by very concrete operators and we have nice combinatorial formulas for all joint
moments. But does this mean that we understand this non-commutative distribution
well? Unfortunately, not really. In particular, we do not get a hold on its operator-
valued Cauchy transform.

Following our general strategy of going over from tuples of non-commuting op-
erators to one operator-valued operator we put our operators Xi,..., X, on the
diagonal of an n x n matrix

Xy 0 ... 0
ADE R o
0 0 - X,
Understanding the distribution of (Xi,...,X,,) is now the same as understanding

the B-valued distribution of X, where we have put B := M, (C); the matrix X is
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what we would call an operator-valued g-semicircular element. In order to deal with
this we should understand the B-valued Cauchy transform Gy = (Ggf))keN. For a
full understanding we need its structure as a fully matricial function with all its
matrix amplifications, but for many applications even the knowledge just on the
base level would be very helpful. But here we are stuck. We do not have any nice
concrete analytic description of this Cauchy transform.

From the situation for ¢ = 0, the case of free semicirculars, one might have got the
impression that the one-dimensional and the multi-variate case are not so different
after all. In that case the quadratic equation for the Cauchy transform of the
scalar-valued semicircular distribution was replaced by a corresponding operator-
valued quadratic equation. The latter was of course harder than its scalar-valued
counterpart, but we could still deal with it. This might give the impression that
also in the case of general ¢ we should be able to extend results from the n =1 case
to the general operator-valued situation. This is, unfortunately, not the case. We
understand the n =1 case for all ¢ quite well, but all the nice structure there does
not extend into the operator-valued regime.

For n = 1, the ¢-Gaussian distribution is a probability measure on the interval
[-2/v/1-¢q,2//1-q], with analytic formulas for its density, see Theorem 1.10 in
[BKS]. For its Cauchy transform G we do not have an algebraic equation, but we
know a good continued fraction expansion of the form

1
1
1+¢q

G(z) =

z —

1+q+¢?
zZ—...

The naive guess that one might also have a corresponding operator-valued version
of such a continued fraction expansion is unfortunately not true. Whereas in the
scalar case any probability measure has a continued fraction expansion for its Cauchy
transform, this does not hold any more in the operator-valued setting (see [AW]),
and it is easy to check that the matrix X in (13.1) for the ¢g-Gaussian distribution
is one of the basic examples where this fails.

So in a sense, at the moment our machinery for operator-valued Cauchy-transforms
has unfortunately nothing to offer for dealing with ¢-Gaussian distributions. Of
course, Cauchy transforms are not everything and we have also other approaches and
tools to understand non-commutative distributions. In particular, there has been
quite some progress [GSh, Jek19] in our understanding of the ¢g-Gaussian distribu-
tions, by describing them as free Gibbs states and using non-commutative versions
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of transport to relate different ¢’s. Combined with [BM] this gives then also regular-

ity properties of polynomials in ¢-Gaussian operators. What is missing, compared

to the free case, is a way to calculate the distribution of polynomials in g-Gaussians.
But this would be the content of another lecture series ...
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