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This in an introduction to the theory of non-commutative distributions of non-
commuting operators or random matrices. Starting from the basic problem to find
a good approach to the meaning of “non-commutative distribution” we will, in par-
ticular, cover: free analysis, which is a version of complex analysis for several non-
commuting variables; the operator-valued version of free probability theory (combi-
natorial but also analytic aspects); the linearization trick to reduce non-linear scalar
problems to linear operator-valued problems; the combination of operator-valued
convolution and linearization to calculate the distribution of polynomials in free
variables; the basic theory of non-commutative rational functions.
On one hand, this is a continuation of the Free Probability Lecture Notes. On the

other hand, the theory of free probability is developed again, but in a more general,
operator-valued context. So, in principle and with some additional efforts, it should
be possible to read the present notes without having a prior knowledge on free
probability. Big parts of the material do also not deal so much with free variables,
but more general with analytic and algebraic aspects of maximal non-commuting
variables.
The material here was presented in the summer term 2019 at Saarland University

in 20 lectures of 90 minutes each. The lectures were recorded and can be found
online at https://www.math.uni-sb.de/ag/speicher/web_video/index.html.
Many of the presented results were actually achieved in recent years in the context

of the ERC-grant “Non-Commutative Distributions in Free Probability” (2014-19).
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0 Introduction
We are interested in properties, preferably analytic, of distributions µX1,...,Xn of

○ operators X1, . . . ,Xn on Hilbert spaces (typically from C∗-algebras or von
Neumann algebras);

○ often those operators are “limits in distribution” of random matrix models;
○ typically our operators don’t commute, which makes our distributions “non-
commutative”.

0.1 Classical case
Consider first the classical case of “commutative” distributions. Then random vari-
ables X1, . . . ,Xn are measurable functions Xi ∶ Ω→ R (i = 1, . . . , n), where (Ω,A, P )
is a probability space, i.e., P is a probability measure on the σ-algebra A over Ω,
and the distribution µX1,...,Xn is a probability measure on Rn, given as push-forward
of P , i.e.,

µX1,...,Xn(B) = P ({ω ∈ Ω ∣ (X1(ω), . . . ,Xn(ω)) ∈ B}) for any Borel set B of Rn.

There are various ways of describing or working with this object: µX1,...,Xn is
(i) a probability measure on Rn;
(ii) a positive linear map, which allows to average over continuous functions of

X1, . . . ,Xn:

E[f(X1, . . . ,Xn)] = ∫
Rn

f(t1, . . . , tn)dµX1,...,Xn(t1, . . . , tn)

= ∫
Ω

f(X1(ω), . . . ,Xn(ω))dP (ω),

for continuous f ∶ Rn → C; this is the same as (i) via the Riesz respresentation
theorem;

(iii) uniquely determined by its Fourier transform

F(t1, . . . , tn) = E[e−i(t1X1+⋯+tnXn)];
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or other nice analytic functions on Rn or Cn; e.g., for n = 1, one also has the
Cauchy or Stieltjes transform G(z) = E[(z −X)−1];

(iv) in many cases (e.g., compactly supported case) uniquely determined by its
moments

E[Xk1
1 ⋯Xkn

n ] for all k1, . . . , kn ∈ N0.

0.2 Non-commutative case
Consider now general (i.e., not necessarily commuting) X1, . . . ,Xn ∈ A for a non-
commutative probability space (A, ϕ), where A is a unital algebra and ϕ ∶ A → C a
unital linear functional (usually with some additional analytic structure). Can we
give sense to µX1,...,Xn in this setting?
The only item which makes directly sense is the combinatorial item (iv); and this

will serve as our definition in the non-commutative case: µX1,...,Xn is the collection
of all moments

ϕ(Xi(1)⋯Xi(k)) for all k ∈ N; 1 ≤ i(1), . . . , i(k) ≤ n

of our (non-commutative) random variables X1, . . . ,Xn.
Our goal is an analytic understanding of this; i.e., to find non-commutative ver-

sions or replacements for items (i) - (iii). In particular, we would like to to have
notions for and results on

○ “smoothness” or “regularity” of non-commutative distributions;
○ absence of “atoms”;
○ existence of “densities”.

We still don’t know what a “non-commutative probability measure” is, but there has
been quite some progress in recent years on dealing with this via versions of (ii) and
(iii). In particular, we can say quite a bit about the distribution of f(X1, . . . ,Xn)
for big classes of (X1, . . . ,Xn) and big classes of f . In particular, this gives results
on the asymptotic eigenvalue distribution for polynomials in independent random
matrices; or, equivalently, the distribution of polynomials in free variables.
These results rely in particular on progress on
○ operator-valued versions of free probability theory of Voiculescu;
○ free analysis (aka free non-commutative function theory);
○ relating analytic questions about operators in von Neumann algebras with the
theory (of Cohn et al.) of non-commutative linear algebra and the free skew
field (aka non-commutative rational functions).

All of this, and much more, will be covered in the coming chapters.
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1 Basic Definitions and Examples
We start with the basic definitions and the most prominent example of a non-
commutative distribution: namely free semicircular variables. They show up as the
sum of creation and annihilation operators on the full Fock space as well as the
limit of our most beloved random matrices, namely independent Gaussian random
matrices.

1.1 Non-commutative distributions and moments
Definition 1.1. (1) A non-commutative probability space (A, ϕ) consists of

○ a unital algebra A;
○ a unital linear functional ϕ ∶ A → C; unital means ϕ(1) = 1.

(2) A C∗-probability space is a non-commutative probability space (A, ϕ), where
○ A is a unital C∗-algebra;
○ ϕ is a state, i.e., ϕ(A∗A) ≥ 0 for all A ∈ A.

(3) Elements A1, . . . ,An ∈ (A, ϕ) are called (non-commutative) random variables.
Remark 1.2. By the GNS construction, a C∗-probability space can always be written
as:

○ A ⊂ B(H), for a Hilbert space H;
○ ϕ(A) = ⟨Aξ, ξ⟩, for some unit vector ξ ∈ H.

Definition 1.3. Let (A, ϕ) be a non-commutative probability space and consider
A1, . . . ,An ∈ A. The (non-commutative) distribution µA1,...,An of A1, . . . ,An is given
by the collection of all their joint moments:

µA1,...,An =̂ {ϕ(Ai1⋯Aik) ∣ k ∈ N; 1 ≤ i1, . . . , ik ≤ n}.

1.2 The quest for an analytic understanding of
non-commutative distributions

Remark 1.4. We will usually work in a C∗-probability space and consider selfadjoint
operators X1, . . . ,Xn. Our main goal is to get a better analytic understanding of
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the distribution µX1,...,Xn . For n = 1 or also for the multivariate classical case (i.e.,
general n, but the Xi commute) there is a lot of (commutative) analysis available.

Example 1.5. (1) n = 1: Consider X = X∗ ∈ A, where (A, ϕ) is a C∗-probability
space. Then µX can be identified with a probability measure on R (with
compact support) via

ϕ(Xk) = ∫
R

tkdµX(t) for all k ∈ N.

This follows by Weierstraß Approximation Theorem of continuous functions
by polynomials on compact intervals and by Riesz Representation Theorem.

(2) The same applies to the general commutative situation. For a C∗-probability
space (A, ϕ) and selfadjoint commuting X1, . . . ,Xn ∈ A the distribution µX1,...,Xn

can be identified with a compactly supported probability measure µ on Rn via

ϕ(Xi1⋯Xik) = ∫
Rn

ti1⋯tikdµ(t1, . . . , tn) for all n ∈ N; 1 ≤ i1, . . . , in ≤ n.

Remark 1.6. (1) Thus, in the the classical case, distributions “are” probability
measures on Rn and we can ask questions about their regularity:

○ do they have atoms;
○ do they have a density (with respect to Lebesgue measure, or - equiva-
lently, but maybe conceptually better - with respect to Gaussian mea-
sure);

○ what are the regularity properties of those densities?
(2) There are nice analytic functions which contain all the relevant information

about classical distributions; in particular we have
(i) Fourier transform (aka characteristic function)

F(t1, . . . , tn) = E[e−i(t1X1+⋯+tnXn)];

(ii) Cauchy transform (in the case n = 1)

G(z) = ∫
1

z − tdµ(t) = ϕ(
1

z −X ),

which is defined and analytic on

C+ ∶= {z ∈ C ∣ Im z > 0}.
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(3) If we have a C∗-probability space (A, ϕ), why are we not happy with ϕ re-
stricted to the C∗-algebra generated by X1 . . . ,Xn as our analytic description?
Actually, don’t we say that C∗(X1, . . . ,Xn) is like the continuous functions of
X1, . . . ,Xn and vN(X1, . . . ,Xn) is like the measurable functions of X1, . . . ,Xn;
indeed . . . but in these phrases we cannot separate the functions from the op-
erators.
What we really want is to compare random variables X1, . . . ,Xn in (A, ϕ)
with random variables Y1, . . . , Yn in (B, ψ), for two possibly different non-
commutative probability spaces (A, ϕ) and (B, ψ). We can only do this by
comparing ϕ(f(X1, . . . ,Xn)) with ψ(f(Y1, . . . , Yn)) for as big classes of f as
possible. Thus, f must make sense as an abstract function which can be
applied to tuples of non-commuting operators.
The same applies to the classical situation. Given classical probability spaces
(Ω, P ) and (Ω̃, P̃ ) and random variables X ∶ Ω→ R and Y ∶ Ω̃→ R, we are not
comparing P with P̃ or X and Y directly, but just their distribution, i.e.

∫
Ω

f(X(ω))dP (ω) with ∫
Ω̃

f(Y (ω̃))dP̃ (ω̃)

for special classses of functions f ; like: monomials, continuous, measurable.

1.3 Examples of non-commutative distributions:
full Fock space and random matrices

Example 1.7. For a Hilbert space H we define the full Fock space by

F(H) ∶=⊕
k≥0
H⊗k = C ⋅Ω⊕H⊕H⊗2 ⊕⋯,

where Ω is a unit vector in H⊗0 ≃ C, called vacuum.
Elements in F(H) are given by square summable linear combinations of f1⊗⋯⊗fk

(k = 0,1, . . . ; f1, . . . , fk ∈ H) with inner product

⟨f1 ⊗⋯⊗ fk, g1 ⊗⋯⊗ gl⟩ = δkl⟨f1, g1⟩⋯⟨fk, gk⟩.

For f ∈ H, we define the (left) creation operator l(f), determined by

l(f)Ω = f
l(f)f1 ⊗⋯⊗ fk = f ⊗ f1 ⊗⋯⊗ fk.
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Its adjoint is the (left) annihilation operator l∗(f), given by

l∗(f)Ω = 0
l∗(f)f1 ⊗⋯⊗ fk = ⟨f1, f⟩f2 ⊗⋯⊗ fk.

Let ξ1, . . . , ξn be an orthonormal system of vectors in H (i.e., ξi ⊥ ξj for i /= j and
∥ξi∥ = 1 for all i), then we consider the selfadjoint operators

Si ∶= l(ξi) + l∗(ξi) (i = 1, . . . , n).

For ϕ we take

ϕ(A) ∶= ⟨AΩ,Ω⟩ “vacuum expectation state”.

We are interested in the non-commutative distribution µS1,...,Sn of the operators
S1, . . . , Sn in the C∗-probability space (B(F(H)), ϕ). We have a quite good under-
standing of this, namely we know:

○ S1, . . . , Sn are free (in the sense of Voiculescu’s free probability theory)
○ and each Si has a semicircular distribution

dµSi(t) =
1

2π
√

4 − t2dt on [−2,2],

−2 2

1
π

i.e.,

ϕ(Ski ) =
1

2π

+2

∫
−2

tk
√

4 − t2dt =
⎧⎪⎪⎨⎪⎪⎩

0, k odd
1

k/2+1(
k
k/2), k even.

The non-zero moments are the Catalan numbers.
This µS1,...,Sn , the non-commutative distribution of free semicircular variables, is our
benchmark; other distributions will be compared to this. In particular, the notion
of a density (if there is any!) should be with regard to this.
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Example 1.8. Many important distributions are given as limits of random matrices.
Let P (x1, . . . , xn) be a non-commutative selfadjoint polynomial in n non-commuting
variables. For example, for n = 2,

P (x1, x2) = x2
1 + x2

2 or P (x1, x2) = x4
1 + x1x

2
2x1 + 5.

We consider on the space of n-tuples (X(N)
1 , . . . ,X

(N)
n ) of selfadjoint N ×N matrices

the probability measure µN given by

dµN(X(N)
1 , . . . ,X

(N)
n ) = cN ⋅ e−N2 tr[P (X(N)1 ,...,X

(N)
n )]dλ(X(N)

1 ) . . . dλ(X(N)
n ),

where cN is a normalization constant such that µN is a probability measure, tr
denotes the normalized trace on matrices and

dλ(X(N)) =
N

∏
i=1
d(Rexii) ∏

1≤i<j≤N
d(Rexij)d(Imxij)

is the Lebesgue measure on all entries of the selfadjoint matrix X(N) = (xij)Ni,j=1
which are not constrained by the selfadjointness condition. Then we consider on
selfadjoint N ×N matrices a state ϕN given by, for k ∈ N and 1 ≤ i1, . . . , ik ≤ n,

ϕN(X(N)
i1

⋯X(N)
ik

) ∶= ∫ tr[X(N)
i1

⋯X(N)
ik

]dµN(X(N)
1 , . . . ,X

(N)
n )

and denote by µX1,...,Xn the limit of this distribution, given by the moments

ϕ(Xi1⋯Xik) ∶= lim
N→∞

ϕN(X(N)
i1

⋯X(N)
ik

),

provided these limits exist. The latter depends on P and is, for n ≥ 2, a big open
question. Only some simple situations are will understood. E.g., for P (x1, . . . , xn) =
x2

1 + ⋯ + x2
n, corresponding to independent Gaussian random matrices (gue), this

limit exists and is, by results of Voiculescu, equal to the one from Example 1.7, given
by free semicirculars.
To summarize, we are interested in the limit of multi-matrix models and want to

understand whether such limits exist and, in particular, how to describe them.

The assignments address some more details about free semicirculars, in the context
of the full Fock space (Exercise 1) and as the limit of random matrices (Exercise 2).

13



1.4 Non-commutative polynomials and
distributions

Definition 1.9. (1) We denote by C⟨x1, . . . , xn⟩ the polynomials in n non-com-
muting indeterminates x1, . . . , xn; i.e., the unital algebra in n algebraically free
non-commuting generators x1, . . . , xn. Thus, a linear basis of C⟨x1, . . . , xn⟩ is
given by all monomials xi1⋯xik (k ∈ N0; 1 ≤ i1, . . . , ik ≤ n; k = 0 corresponds
to the constant polynomial 1), and multiplication of two such monomials is
done by justaposition. A general polynomial p = p(x1, . . . , xn) ∈ C⟨x1, . . . , xn⟩
is thus of the form

p(x1, . . . , xn) = α0 +
d

∑
k=1

n

∑
i1,...,ik=1

αi1,...,ikxi1⋯xik , (1.1)

for d ∈ N0, α0, αi1,...,ik ∈ C.We can make C⟨x1, . . . , xn⟩ to a ∗-algebra by declar-
ing x∗i = xi for all i = 1, . . . , n.

(2) If (A, ϕ) is a C∗-probability space and Xi = X∗
i ∈ A (i = 1, . . . , n), then we

have the evaluation map

C⟨x1, . . . , xn⟩ → A
p(x1, . . . , xn) ↦ p(X1, . . . ,Xn),

which is the ∗-homomorphism given by 1↦ 1 and xi ↦Xi (i = 1, . . . , n). More
explicitly, for a non-commutative polynomial p(x1, . . . , xn) of the form (1.1)
we have

p(X1, . . . ,Xn) = α0 +
d

∑
k=1

n

∑
i1,...,ik=1

αi1,...,ikXi1⋯Xik . (1.2)

We denote by C⟨X1, . . . ,Xn⟩ ⊂ A the image of this map, i.e., the unital ∗-
subalgebra of A, which is generated by X1, . . . ,Xn.

(3) We define now, more precisely as in Definition 1.3, the (non-commutative)
distribution µX1,...,Xn as the linear functional

µX1,...,Xn ∶ C⟨x1, . . . , xn⟩ → C
p(x1, . . . , xn) ↦ ϕ(p(X1, . . . ,Xn)).

Remark 1.10. (1) With C[x1, . . . , xn] we denote, as usual, the ring of polynomials
in n commuting variables.
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(2) We might also need at some point the non-selfadjoint versions of Definition 1.9;
i.e., if (A, ϕ) is just a non-commutative probability space the we do not put a
∗-structure on C⟨x1, . . . , xn⟩; or, if we deal with general, not necessarily selfad-
joint, A1, . . . ,An in a C∗-probability space, we have the ∗-polynomials in n non-
commuting non-selfadjoint indeterminates z1, . . . , zn, C⟨z1, . . . , zn, z∗1 , . . . , z

∗
n⟩.

1.5 Generalizations of non-commutative
distributions

Remark 1.11. There appeared recently some generalizations of non-commutative
distributions in the context of free probability, like:
(i) Bi-distribution or pairs of faces (Voiculescu 2014 [Voi14]). There the random

variables are divided into two classes, some random variables are declared as
right variables, others as left variables.

(ii) Trace polynomial distributions (Cebron 2013 [Ceb]). There C⟨x1, . . . , xn⟩, the
polynomials in x1, . . . , xn with “constant” coefficients, is replaced by C{x1, . . . , xn},
the polynomials in x1, . . . , xn with coefficients depending on “(tracial) mo-
ments” of x1, . . . , xn.

(iii) Traffic distribution (Male 2011 [Mal]). Moments can be identified with cyclic
graphs (for the case when ϕ is a trace); for example,

ϕ(T1T2T3) =
1
N

N

∑
i,j,k=1

t
(1)
ij t

(2)
jk t

(3)
ki

corresponds to

T1 T2

T3
i

j

k.

More general graphs, like

T1

T2

T3

T4

T5

T6 T7

T8 T9
T10

T11

T12

i2
i1

i3

i4

i5

i7
i8

i6
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correspond then to more general “graph-moments”

N

∑
i1,...,i8=1

t
(1)
i1i2
t
(2)
i3i2
t
(3)
i3i4
t
(4)
i4i4
t
(5)
i5i3
t
(6)
i2i5
t
(7)
i6i5
t
(8)
i6i5
t
(9)
i6i6
t
(10)
i7i5

t
(11)
i8i7

t
(12)
i8i7

For those generalizations, a general analytic theory is even more unclear than for
the ordinary non-commutative distributions, and we will not address those general-
izations in the following.
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2 Operator-Valued Distributions
and Operator-Valued Cauchy
Transform

Our main analytic object for dealing with non-commutative distributions will be a
version of the Cauchy transform. However, this can only be defined easily for one op-
erator, but in a more general, operator-valued setting. Since the information about
the non-commutative distribution of a non-commutative tuple can be rewritten in
terms of one operator-valued operator this opens the door to the analytic world of
non-commutative distributions.

2.1 Going from several non-commuting operators
to one operator-valued operator

Definition 2.1. Let (A, ϕ) be a C∗-probability space andX =X∗ ∈ A. The function

GX ∶ C+ → C−; z ↦ ϕ( 1
z −X ) = ∫

R

1
z − tdµX(t) (2.1)

is called Cauchy transform of X (or of µX).

Remark 2.2. A Cauchy transform GX has the following properties.
(i) GX is analytic on C+;
(ii) GX has a power series expansion about ∞:

GX(z) =
∞
∑
k=0

ϕ(Xk)
zk+1 for ∣z∣ > ∥X∥;

(iii) we have
lim
z∈C+
∣z∣→∞

zGX(z) = ϕ(X0) = 1;
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(iv) µX can be recovered from GX by the Stieltjes inversion formula

dµX(t) = − lim
ε↘0

1
π

ImGX(t + iε)dt;

one should note that t ↦ − ImGX(t + iε)/π is, for each ε > 0, the density of a
probability measure.

Motivation 2.3. Let (C, ϕ) be a C∗-probability space and consider selfadjoint X1, . . . ,
Xn ∈ C. We would like to encode the information about µX1,...,Xn in an analytic
function, something like

∞
∑
k=0

n

∑
i1,...,ik=1

zi1⋯zikϕ(Xi1⋯Xik). (2.2)

Since the Xi do not commute in general, the variables z1, . . . , zn should also not
commute. Thus we need something like an analytic function in non-commuting
variables. It is not clear how to give (2.2) a good analytic meaning (in particular, if
we want this in some non-commutative half-planes for z1, . . . , zn).
Instead, we will rewrite the above in terms of one variable X, but in an operator-

valued setting. For this we put

Mn(C) ∶=Mn(C) ⊗ C = {(Aij)ni,j=1 ∣ Aij ∈ C}

and
id⊗ϕ ∶Mn(C) →Mn(C); (Aij)ni,j=1 ↦ (ϕ(Aij))ni,j=1.

Denoting
A ∶=Mn(C), B ∶=Mn(C), E ∶= id⊗ϕ ∶ A → B,

we have now an operator-valued probability space, where, compared to Definition
1.1, C is replaced by a (non-commutative) subalgebra B of A and ϕ is replaced by
a conditional expectation E onto B. In this setting we put

X ∶=
⎛
⎜⎜⎜
⎝

X1 0 ⋯ 0
0 X2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Xn

⎞
⎟⎟⎟
⎠
∈ A.

All moments of X1, . . . ,Xn with respect to ϕ can then be recovered from the B-
valued moments E[b0Xb1X⋯bk−1Xbk] (b0, . . . , bk ∈ B) of X. For example, ϕ(X1X2)
can be recovered from

(1 0
0 0)(X1 0

0 X2
)(0 1

0 0)(X1 0
0 X2

)(0 0
1 0) = (X1X2 0

0 0)
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as
(ϕ(X1X2) 0

0 0) = E[b0Xb1Xb2]

with
b0 = (1 0

0 0) , b1 = (0 1
0 0) , b2 = (0 0

1 0) .

2.2 The operator-valued setting
Definition 2.4. (1) An operator-valued (non-commutative) probability space (A,B,E)

consists of
○ a unital algebra A;
○ a unital subalgebra 1 ∈ B ⊂ A;
○ a conditonal expectation E ∶ A → B, i.e.,

- E is linear;
- E(1) = 1;
- E has the bimodule property:

E[b1Ab2] = b1E[A]b2 for all b1, b2 ∈ B, A ∈ A;

thus also in particular: E[b] = b for all b ∈ B.
(2) If A and B are unital C∗-algebras and E is positive (i.e., for all A ∈ A there

is b ∈ B such that E[A∗A] = b∗b), then (A,B,E) is an operator-valued C∗-
probability space.

(3) Elements X ∈ A are called operator-valued (or B-valued) random variables.
(4) The operator-valued moments of X are of the form

E[X], E(Xb1X], E[Xb1Xb2X], . . . E[Xb1Xb2⋯Xbk−1X], . . .

(5) The collection of all operator-valued moments constitutes the operator-valued
distribution µX of X.

Definition 2.5. Let (A,B,E) be an operator-valued C∗-probability space and X =
X∗ ∈ A. Then we define the operator-valued Cauchy transform GX ∶ B → B (actually
not everywhere defined, nice domain will be specified later) by

GX(b) = E[(b −X)−1] (if b −X is invertible).

Remark 2.6. (1) GX is an analytic function between the Banach spaces B → B in
Gateaux or Frèchet sense; more on this later.
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(2) Formally, GX has a power series expansion: for ∥b−1∥ < 1/∥X∥ we have

(b −X)−1 = (b[1 − b−1X])−1

= ∑
k≥0

(b−1X)kb−1

= b−1 + b−1Xb−1 + b−1Xb−1Xb−1X +⋯,

and thus
GX(b) = ∑

k≥0
E[(b−1X)kb−1].

(3) As we see from the power series expansion, GX does not contain informa-
tion about all moments, but only about symmetric moments of the form
E[XbXbXb⋯bX]. In order to get all moments we have to consider matri-
cial extensions (amplifications) G(m)

X of GX . For each m ∈ N, we amplify our
setting to

(Mm(A),E ⊗ id,Mm(B))

and consider there the Cauchy transform of

X ⊗ 1 =
⎛
⎜⎜⎜
⎝

X 0 ⋯ 0
0 X ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ X

⎞
⎟⎟⎟
⎠
∈Mm(A),

i.e., for G(m)
X ∶Mm(B) →Mm(B) with b = (bij)mi,j=1 we have

G
(m)
X (b) = E ⊗ id[(b−X ⊗ 1)−1] = E ⊗ id

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜
⎝

b11 −X b12 ⋯ b1m
b21 b22 −X ⋯ b2m
⋮ ⋮ ⋱ ⋮
bm1 bm2 ⋯ bmm −X

⎞
⎟⎟⎟
⎠

−1⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4) Note that unsymmetric moments on base level m = 1 can be recovered from
symmetric moments on higher levels, similar as in 2.3. For example, E[Xb1Xb2X]
can be recovered from a symmetric moment for m = 3 as follows. For

b =
⎛
⎜
⎝

0 b1 0
0 0 b2
0 0 0

⎞
⎟
⎠
, X ⊗ 1 =

⎛
⎜
⎝

X 0 0
0 X 0
0 0 X

⎞
⎟
⎠
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we have

E ⊗ id[X ⊗ 1 ⋅ b ⋅X ⊗ 1 ⋅ b ⋅X ⊗ 1] =
⎛
⎜
⎝

0 0 E[Xb1Xb2X]
0 0 0
0 0 0

⎞
⎟
⎠
.

(5) Thus, in order to encode all operator-valued moments of X in some analytic
function, we do not just need GX = G(1)

X , but also all its matrix amplifications
G

(m)
X . Those G(m)

X are related to each other for different m as follows:
(i) For invertible b1 ∈Mm1(B) and b2 ∈Mm2(B) we have

Gm1+m2
X (b1 0

0 b2
) = E ⊗ id [((b1 −X ⊗ 1)−1 0

0 (b2 −X ⊗ 1)−1)]

= (G
m1
X (b1) 0

0 Gm2
X (b2)

) ;

(ii) for invertible S ∈ Mm(C) and b ∈ Mm(B) we have (note that we have
S ⋅X ⊗ 1 ⋅ S−1 =X ⊗ 1)

G
(m)
X (SbS−1) = E ⊗ id[(SbS−1 −X ⊗ 1)−1]

= E ⊗ id[(SbS−1 − S ⋅X ⊗ 1 ⋅ S−1)−1]
= E ⊗ id[S(b −X ⊗ 1)−1S−1]
= S ⋅E ⊗ id[(b −X ⊗ 1)−1] ⋅ S−1

= S ⋅G(m)
X (b) ⋅ S−1.

(6) Collections of functions which satisfy (i) and (ii) are called fully matricial func-
tions (by Voiculescu [Voi04]) or (free) non-commutative functions (by Vinnikov
et al. [KVV]). We will have to have a closer look on them in the next chapter.
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3 Non-Commutative Functions
We will now formalize the algebraic properties of the G(m)

X ; but ignore first the
question of domain. The main point will be to see that “analyticity” can be encoded
in algebraic properties over matrices. Later, in Section 3.2 we will also address the
question of the domain. A good source for the material in this and the next chapter
are the expository notes Operator-valued non-commutative probability by David
Jekel [Jek18].

3.1 How to encode analyticity in algebraic
properties

Definition 3.1. Let B be a unital algebra. A collection f = (fm)m∈N of functions

fm ∶Mm(B) →Mm(B)
z ↦ fm(z)

is called a non-commutative function (or fully matricial function), if it satisfies the
following two conditions.
(i) f respects direct sums:

fm1+m2 [(
z1 0
0 z2

)] = (fm1(z1) 0
0 fm2(z2)

) (3.1)

for all m1,m2 ∈ N, z1 ∈Mm1(B), z2 ∈Mm2(B).
(ii) f respects similarities:

fm(SzS−1) = Sfm(z)S−1 (3.2)

for all m ∈ N, z ∈Mm(B), S ∈Mm(C) invertible.
Remark 3.2. (1) It is fairly easy to see (and you are asked in Exercise 4 to see

this) that (i) and (ii) are equivalent to the fact that f respects intertwinings:
for all n,m ∈ N, z1 ∈ Mn(B), z2 ∈ Mm(B), and an n ×m matrix T ∈ Mn,m(C)
we have

z1T = Tz2 Ô⇒ fn(z1)T = Tfm(z2).
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(2) Usually, our interesting functions (like G) are not defined on all ofMn(B), but
only on subsets. The conditions above have then to be modified accordingly.
We will ignore this for the moment, but come back to this issue later.

(3) We will often just write f(z) instead of fm(z), when the m is clear.
(4) We claim now that (i) and (ii) encode analyticity in an algebraic way. In

particular, they should allow us to distinguish analytic functions like
f(z) = z for all z ∈Mm(B)

from non-analytic ones, like
g(z) = z∗ for all z ∈Mm(B).

Note that (i) does not see a difference here,

g (z1 0
0 z2

) = (z
∗
1 0
0 z∗2

) = (g(z1) 0
0 g(z2)

) ,

but (ii) does:
f(SzS−1) = SzS−1 = Sf(z)S−1,

but
g(SzS−1) = (SzS−1)∗ = S∗−1z∗S∗ /= Sg(z)S−1

in general for S ∈ Mm(C) with m ≥ 2. Note that (ii) is for m = 1 always
trivially satisfied, since then S ∈ C.

Example 3.3. Consider the case B = C; i.e., let f1 ∶ C → C be an analytic function.
Then one can extend this by holomorphic functional calculus to matrices via

fm ∶Mm(C) →Mm(C)

z ↦ fm(z) ∶= 1
2πi ∫

Γ

f1(ξ)
ξ − z dξ,

where we integrate around the eigenvalues of the matrix z. The collection f =
(fm)m∈N satisfies then (i) and (ii):

f (z1 0
0 z2

) = 1
2πi ∫

Γ

f1(ξ)(
ξ − z1 0

0 ξ − z2
)
−1

dξ

= 1
2πi ∫

Γ

f1(ξ)(
(ξ − z1)−1 0

0 (ξ − z2)−1)dξ

= (f(z1) 0
0 f(z2)

)
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and

f(SzS−1) = 1
2πi ∫

Γ

f1(ξ)(ξ − SzS−1)−1dξ = 1
2πi ∫

Γ

f1(ξ)S(ξ − z)−1S−1dξ = Sf(z)S−1.

We can in this case also recover the derivative f ′1 from the action of the higher fm,
without taking limits. For this consider z1, z2,w ∈ C, then

f2 (
z1 w
0 z2

) = 1
2πi ∫

Γ

f(ξ)(ξ − z1 −w
0 ξ − z2

)
−1

dξ

= 1
2πi ∫

Γ

f(ξ)((ξ − z1)−1 (ξ − z1)−1w(ξ − z2)−1

0 (ξ − z2)−1 )dξ

= (f1(z1) ∗
0 f1(z2)

)

with

∗ = 1
2πiw∫

Γ

f(ξ)(ξ − z1)−1(ξ − z2)−1dξ

= 1
2πiw∫

Γ

f(ξ) 1
z1 − z2

[ 1
ξ − z1

− 1
ξ − z2

]dξ

= wf(z1) − f(z2)
z1 − z2

,

and thus
f2 (

z w
0 z

) = (f1(z) f ′1(z)w
0 f1(z)

) .

Remark 3.4. In the same way, derivatives can be recovered for non-commutative
functions, just relying on properties (i) and (ii) (and some continuity or boundedness
condition). We address this in the following. For this one should note that upper
triangular matrices are similar to diagonal matrices:

(z1 z2 − z1
0 z2

) = (1 1
0 1)

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
S

(z1 0
0 z2

)(1 −1
0 1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S−1

.
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Lemma 3.5. Let f be a non-commutative function. Then we have for z1 ∈Mn(B),
z2 ∈Mm(B), w ∈Mn,m(B):

f (z1 w
0 z2

) = (fn(z) ∗
0 fm(z)) .

We denote the entry in ∗ by ∂f(z1, z2) ♯w or by ∆f(z1, z2)[w]. Note that this is
an element in Mn,m(B).

Proof. Write

f (z1 w
0 z2

) = (a b
c d

) .

Note that we have then by (3.1)

f
⎛
⎜
⎝

z1 w 0
0 z2 0
0 0 z1

⎞
⎟
⎠
=
⎛
⎜
⎝
f (z1 w

0 z2
) 0

0 f(z1)

⎞
⎟
⎠
=
⎛
⎜
⎝

a b 0
c d 0
0 0 f(z1)

⎞
⎟
⎠
.

Furthermore, we have

⎛
⎜
⎝

z1 w 0
0 z2 0
0 0 z1

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 −1
0 1 0
0 0 1

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

⎛
⎜
⎝

z1 w 0
0 z2 0
0 0 z1

⎞
⎟
⎠

⎛
⎜
⎝

1 0 1
0 1 0
0 0 1

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S−1

and thus by (3.2)

⎛
⎜
⎝

a b 0
c d 0
0 0 f(z1)

⎞
⎟
⎠
= f

⎛
⎜
⎝

z1 w 0
0 z2 0
0 0 z1

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0 −1
0 1 0
0 0 1

⎞
⎟
⎠
⋅ f

⎛
⎜
⎝

z1 w 0
0 z2 0
0 0 z1

⎞
⎟
⎠
⋅
⎛
⎜
⎝

1 0 1
0 1 0
0 0 1

⎞
⎟
⎠

=
⎛
⎜
⎝

1 0 −1
0 1 0
0 0 1

⎞
⎟
⎠
⋅
⎛
⎜
⎝

a b 0
c d 0
0 0 f(z1)

⎞
⎟
⎠
⋅
⎛
⎜
⎝

1 0 1
0 1 0
0 0 1

⎞
⎟
⎠

=
⎛
⎜
⎝

a b a − f(z1)
c d c
0 0 f(z1)

⎞
⎟
⎠
.

This implies that a = f(z1) and c = 0. Similarly, one gets that d = f(z1).
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Lemma 3.6. ∂f(z1, z2) ♯w is linear in w.

Proof. We have to show that
(i) for all λ ∈ C and w ∈Mn,m(B):

∂f(z1, z2) ♯(λw) = λ ⋅ ∂f(z1, z2) ♯w;

(ii) for all w1,w2 ∈Mn,m(B):

∂f(z1, z2) ♯(w1 +w2) = ∂f(z1, z2) ♯w1 + ∂f(z1, z2) ♯w2.

We only show (i); the second part is similar, see Exercise 5.
(i) The case λ = 0 is clear, since ∂f(z1, z2) ♯0 = 0. Thus assume that λ /= 0. We

have
(z1 λw

0 z2
) = (λ 0

0 1)(z1 w
0 z2

)(1/λ 0
0 1)

and thus

(f(z1) ∂f(z1, z2) ♯(λw)
0 f(z2)

) = (λ 0
0 1)(f(z1) f(z1, z2) ♯w

0 f(z2)
)(1/λ 0

0 1)

= (f(z1) λ ⋅ f(z1, z2) ♯w
0 f(z2)

) .

Proposition 3.7. (1) ∂f(z1, z2) is a difference operator, i.e., we have for all m ∈
N and all z1, z2 ∈Mm(B)

f(z1) − f(z2) = ∂f(z1, z2) ♯(z2 − z1).

(2) If f is continuous, then, for all m ∈ N and all z ∈ Mm(B), ∂f(z, z) is a
differential operator, i.e.,

∂f(z, z) ♯w = lim
ε↘0

f(z + εw) − f(z)
ε

.

Proof. (1) Put S = (1 1
0 1); then

(z1 z2 − z1
0 z2

) = S (z1 0
0 z2

)S−1,
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and thus

(f(z1) ∂f(z1, z2) ♯(z2 − z1)
0 z2

) = S (f(z1) 0
0 f(z2)

)S−1

= (f(z1) f(z2) − f(z1)
0 f(z2)

) .

(2) By Lemma 3.6 and by part (1), we have

ε ⋅ ∂f(z, z + εw) ♯w = ∂f(z, z + εw) ♯(εw) = f(z + εw) − f(z).

This yields
∂f(z, z + εw) ♯w = 1

ε
[f(z + εw) − f(z)],

and thus
f (z w

0 z + εw) = (f(z)
1
ε[f(z + εw) − f(z)]

0 f(z + εw) ) .

As f is assumed to be continuous, the left hand side of this converges for ε↘ 0
to

f (z w
0 z

) = (f(z) ∂f(z, z) ♯w
0 f(z) )

This implies then that also the right hand side of the above equation converges
and we must have

∂f(z, z) ♯w = lim
ε↘0

1
ε
[f(z + εw) − f(z)].

Definition 3.8. Let (E, ∥ ⋅ ∥E) and (F, ∥ ⋅ ∥E) be complex Banach spaces and let
∅ /= Ω ⊂ E be open. A function f ∶ Ω→ F is called
(i) Gâteau holomorphic on Ω, if

lim
z→0

z∈C/{0}

1
z
[f(x + zh) − f(x)] =∶ δf(x;h)

exists in (F, ∥ ⋅ ∥F ) for all x ∈ Ω and all h ∈ E;
(ii) analytic on Ω, if it is Gâteau holomorphic and locally bounded, i.e., for all

x ∈ Ω there exists r = r(x) > 0 such that

sup
y∈Ω

∥y−x∥E<r

∥f(y)∥F < ∞.
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Remark 3.9. (1) By a theorem of Hille (1944) one knows that an analytic function
is actually also Fréchet holomorphic, i.e., the “total derivative” δf(x; ⋅) ∶ E → F
is a bounded linear operator and

lim
∥h∥E→0

1
∥h∥E

∥f(x + h) − f(x) − δf(x;h)∥F = 0.

Moreover, f has locally a uniformly convergent “Taylor series expansion”.
(2) In Proposition 3.7 we have seen how to get Gâteau holomorphic from the

algebraic conditions on our non-commutative functions, under the condition
of continuity. According to Definition 3.8 and the first part of this remark
local boundedness is a more natural condition to ask for. It turns out that
this is actually sufficient to ensure continuity (and thus analyticity) for our
non-commutative functions.

Proposition 3.10. Let f = (fm)m∈N, fm ∶Mm(B) →Mm(B), be a non-commutative
function. If f is locally bounded (i.e., each fm is locally bounded), then f is contin-
uous (i.e., each fm is continuous). [To be precise: Boundedness and continuity is
here with respect to the C∗-norm on each Mm(B).]

Proof. We know, by 3.7, that for z1, z2 ∈Mm(B)

f (z1 z2 − z1
0 z2

) = (f(z1) f(z2) − f(z1)
0 f(z2)

) ;

and, since ∂f(z1, z2) ♯w is linear in w (by Lemma 3.6), also for λ ∈ C

f (z1 λ(z2 − z1)
0 z2

) = (f(z1) λ[f(z2) − f(z1)]
0 f(z2)

) . (3.3)

Now take z ∈ Mm(B) and ε > 0; we want to find δ > 0 such that w ∈ Mm(B) and
∥w − z∥ < δ implies that ∥f(w) − f(z)∥ ≤ ε.
For this we go to M2m(B) and consider there

z ⊕ z ∶= (z 0
0 z

) .

Since f2m is locally bounded we find r > 0 such that sup... ∥f(y)∥ =∶ C < ∞, where
the supremum is over y ∈M2m(B) such that ∥y − z ⊕ z∥ < r.
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Now we choose δ ∶= min{ r2 , ε r
2C } and consider w ∈Mm(B) with ∥w− z∥ < δ. Then we

have

∥(w
C
ε (w − z)

0 z
) − (z 0

0 z
)∥ = ∥(w − z C

ε (w − z)
0 0 )∥ ≤ ∥w − z∥

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
<δ≤ r2

+C
ε

∥w − z∥
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
<δ≤ ε

C
r
2

< r

and thus, by also using (3.3),

∥(f(w) C
ε [f(w) − f(z)]

0 f(z) )∥ = ∥f (w
C
ε (w − z)

0 z
)∥ ≤ C.

This implies then ∥Cε [f(w) − f(z)]∥ ≤ C, thus ∥f(w) − f(z)∥ ≤ ε.
Remark 3.11. (1) This shows that for locally bounded non-commutative functions

we get the derivative δf(z;w) = ∂f(z, z) ♯w as part of the data of higher fm:

f (z w
0 z

) = (f(z) δf(z;w)
0 f(z) ) .

(2) In the same way we get also higher derivatives:

f
⎛
⎜
⎝

z1 w1 0
0 z2 w2
0 0 z3

⎞
⎟
⎠
=
⎛
⎜
⎝

f(z1) ∂f(z1, z2) ♯w1 ∗
0 f(z2) ∂f(z1, z3) ♯w2
0 0 f(z3)

⎞
⎟
⎠
,

where
∗ =∶ ∂2f(z1, z2, z3) ♯(w1,w2)

is a second-order difference quotient, which gives the second derivative
∂2f(z, z, z) ♯(w1,w2).

(3) One should also note that uniform local boundedness of f allows us to con-
trol the size of the derivatives, so that one gets a convergent “Taylor-Taylor
expansion”

f(z +w) =
∞
∑
k=0

∂k(z, z, . . . , z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k+1

♯(w, . . . ,w
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

).

In Exercise 7 you are asked to prove this expansion.
The Taylors here are two different people: Brook Taylor (∼ 1715) from the
usual Taylor series, and Joseph Taylor (1972), who started the theory of non-
commutative functions in [Tay].
For more on the Taylor-Taylor expansion (and also other aspects of non-
commutative functions) one should consult the monograph Foundations of Free
Non-Commutative Function Theory (2014) by D. Kaliuzhnyi-Verbovetskyi and
V. Vinnikov [KVV].
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3.2 Rigorous definition of fully matricial
functions, caring also about domain

Definition 3.12. (1) For a C∗-algebra B we denote:
(i) Mn(B) =Mn(C) ⊗ B =∶ B(n);
(ii) for z ∈ B(n) we put

z(m) = 1m ⊗ z =
⎛
⎜⎜⎜
⎝

z 0 ⋯ 0
0 z ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ z

⎞
⎟⎟⎟
⎠
∈Mnm(B);

(iii) for z1 ∈ B(n), z2 ∈ B(m) we put

z1 ⊕ z2 = (z1 0
0 z2

) ∈ B(n+m);

(iv) for z ∈ B(n) and r > 0 we put

B(n)(z, r) ∶= {w ∈ B(n) ∣ ∥z −w∥ < r} and B(z, r) ∶= ⋃
m≥1

B(nm)(z(m), r).

(2) A fully matricial domain Ω = (Ω(n))n∈N over B is a sequence of sets Ω(n) ⊂ B(n)

satisfying the following conditions:
(i) Ω respects direct sums: z1 ∈ Ω(n) and z2 ∈ Ω(m) implies that z1 ⊕ z2 ∈

Ω(n+m);
(ii) Ω is uniformly open; i.e., for each z ∈ Ω(n) there exists r > 0 such that

B(z, r) ⊂ Ω;
(iii) Ω is non-empty; i.e., at least one Ω(n) is non-empty.

(3) Let Ω1 and Ω2 be fully matricial domains over B1 and B2, respectively. A
fully matricial function f = (f (n))n∈N ∶ Ω1 → Ω2 is a sequence of functions
f (n) ∶ Ω(n)

1 → Ω(n)
2 satisfying the following conditions:

(i) f respects intertwinings; i.e., for z1 ∈ Ω(n)
1 , z2 ∈ Ω(m)

2 , T ∈ Mn×m(C) we
have: z1T = Tz2 implies that f (n)(z1)T = Tf (m)(z2).

(ii) f is uniformly locally bounded; i.e., for each z ∈ Ω(n)
1 there exit r > 0 and

M > 0 such that

B(z, r) ⊂ Ω1 and f(B(z, r)) ⊂ B(0,M).

Example 3.13. (1) Non-commutative monomials and polynomials over B are fully
matricial with domains Ω(n)

1 = Ω(n)
2 =Mn(B); see Exercise 6.
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(2) Consider
Ω(n) ∶= {z ∈ B(n) ∣ z is invertible}.

Then Ω = (Ω(n))n∈N is a fully matricial domain and

f ∶ Ω→ Ω; z ↦ f(z) ∶= z−1

is fully matricial.

Proof. It is clear that Ω respects direct sums and is non-empyt. To see that Ω
is uniformly open, we claim that B(z,1/∥z−1∥) ⊂ Ω. To check this, note that
for w ∈ B(z,1/∥z−1∥) we have

w−1 = [z − (z −w)]−1 = z−1[1 − (z −w)z−1]−1 = z−1
∞
∑
k=0

[(z −w)z−1]k.

Since ∥(z −w)z−1∥ < 1, the series converges in norm, and thus w ∈ Ω.
From this calculation we also get that

∥w−1∥ ≤ ∥z−1∥
1 − ∥z−1∥ ⋅ ∥z −w∥ ,

which shows that

f[B(z,1/(2∥z−1∥))] ⊂ B(0, ∥z−1∥/2);

thus f is uniformly locally bounded.
f also respects intertwinings: suppose that z1T = Tz2; this implies that Tz−1

2 =
z−1

1 T , i.e., Tf(z2) = f(z1)T .

Proposition 3.14. (1) Suppose that f, g ∶ Ω1 → Ω2 are fully matricial. Then so
are f + g and fg.

(2) Suppose that f ∶ Ω1 → Ω2 and g ∶ Ω2 → Ω3 are fully matricial. Then so is the
composition g ○ f ∶ Ω1 → Ω3.

Proof. We only prove (1). Suppose that z1T = Tz2. Then we have

(f + g)(z1) ⋅ T = f(z1)T + g(z1)T = Tf(z2) + Tg(z2) = T ⋅ (f + g)(z2)

and

(fg)(z1) ⋅ T = f(z1)g(z1)T = f(z1)Tg(z2) = Tf(z2)g(z2) = T ⋅ (fg)(z2).
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Uniform local boundedness can be seen as follows: Consider z ∈ Ω(n), then there are
r1,M1 and r2,M2 such that

f(B(z, r1)) ⊂ B(0,M1) and g(B(z, r2)) ⊂ B(0,M2).

Put r ∶= min(r1, r2); then we have for w ∈ B(z, r)

∥(f + g)(w)∥ ≤ ∥f(w)∥ + ∥g(w)∥ ≤M1 +M2

and
∥(fg)(w)∥ ≤ ∥f(w)∥ ⋅ ∥g(w)∥ ≤M1 ⋅M2.

33





4 The Operator-Valued Cauchy
Transform

Now let’s get serious about the operator-valued Cauchy transform as a fully matricial
function.

4.1 The upper half plane as domain of the
Cauchy transform

Definition 4.1. Let (A,B,E) be an operator-valued C∗-probability space and let
X =X∗ ∈ A. The Cauchy transform GX = (G(n)

X )n∈N of X is defined by

G
(n)
X ∶H+(Mn(B)) →H−(Mn(B)), z ↦ id⊗E[(z − 1⊗X)−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Mn(A)

],

where H+ and H− denote the upper and lower, respectively, half-plane.

Notation 4.2. Let A be a unital C∗-algebra.
(1) For A ∈ A we put

Re(A) ∶= 1
2(A +A∗) real part

Im(A) ∶= 1
2i(A −A∗) imaginary part

(2) We define the strict upper/lower half-plane of A by

H+(A) ∶= {A ∈ A ∣ ∃ ε > 0 ∶ Im(A) ≥ ε ⋅ 1}
H−(A) ∶= {A ∈ A ∣ ∃ ε > 0 ∶ Im(A) ≤ −ε ⋅ 1}.

Instead of ∃ ε > 0 ∶ Im(A) ≥ ε ⋅ 1 we will usually write Im(A) > 0; and in the
same spirit Im(A) < 0 for the second condition.
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Proposition 4.3. Let A ∈H+(A). Then A is invertible and A−1 ∈H−(A).

Proof. Put X ∶= Re(A) and Y ∶= Im(A); by assumption Y is positive and invertible,
and thus we can write

A =X + iY = Y 1/2[Y −1/2XY −1/2 + i]Y 1/2.

Since Y −1/2XY −1/2 is selfadjoint, we have that i is not in its spectrum and hence A
is invertible, with

A−1 = Y −1/2[Y −1/2XY −1/2 + i]−1Y −1/2.

Let us denote Y −1/2XY −1/2 by X̃, then we can calculate

[X̃ + i]−1 = [(X̃ − i)(X̃ + i)]−1(X̃ − i) = (X̃2 + 1)−1(X̃ − i),

which gives finally

Im(A−1) = Y −1/2 ⋅ Im[X̃ + i]−1 ⋅ Y −1/2 = −Y −1/2 ⋅ (X̃2 + 1)−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

⋅Y −1/2 < 0.

Proposition 4.4. H+(Bnc) ∶= (H+(Mn(B)))n∈N is a fully matricial domain over B.

Proof. (i) H+(Bnc) respects direct sums.
Consider z1 ∈H+(Mn(B)) and z2 ∈H+(Mm(B)); then Im z1 ≥ ε1 ⋅1 and Im z2 ≥
ε2 ⋅ 1 and thus

Im(z1 0
0 z2

) = (Im z1 0
0 Im z2

) ≥ (ε1 ⋅ 1 0
0 ε2 ⋅ 1

) ≥ min(ε1, ε2) ⋅ 1;

hence z1 ⊕ z2 ∈H+(Mn+m(B)).
(ii) H+(Bnc) is uniformly open.

Consider z ∈ H+(Mn(B)), i.e., Im z ≥ ε ⋅ 1; we claim that then B(z, ε) ⊂
H+(Bnc). Namely, consider w ∈ B(z, ε), i.e., w ∈Mmn(B) with ∥z(m) −w∥ < ε.
Then we have

∥ Im z(m) − Imw∥ ≤ ∥z(m) −w∥ < ε,
and thus Im z(m) − Imw < ε ⋅ 1, or

Imw > Im z(m)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=(Im z)(m)≥ε⋅1

−ε ⋅ 1 ≥ 0;

which shows that w ∈H+(Mmn(B)).
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(iii) H+(Bnc) is clearly non-empty.

Theorem 4.5. Let (A,B,E) be an operator-valued C∗-probability space and X =
X∗ ∈ A. Then the Cauchy transform

GX ∶H+(Bnc) →H−(Bnc), z ↦ id⊗E[(z − 1⊗X)−1]

is a fully matricial function.

Proof. (i) First we should check that G(n)
X sends H+(Mn(B)) to H−(Mn(B)). For

this, consider z ∈H+(Mn(B)), i.e., Im z ≥ ε ⋅ 1. Then we have Im(z − 1⊗X) =
Im z ≥ ε ⋅1, and thus z−1⊗X ∈H+(Mn(A)); then Proposition 4.3 tells us that
(z − 1⊗X)−1 ∈H−(Mn(A)).
Now we apply id⊗E ∶Mn(A) →Mn(B). By our assumption that (A,B,E) is
an operator-valued C∗-probability space, we have that E ∶ A → B is positive.
Since E is a conditional expectations this implies that it is completely positive,
i.e., all its amplifications id⊗E are also positive. (Note that positivity of a
linear map from A to B does in general not imply complete positivity; one
needs some more structure, like conditional expectations.) So this implies
then that

id⊗E ∶H−(Mn(A)) →H−(Mn(B))
and finally we have

G
(n)
X (z) = id⊗E[(z − 1⊗X)−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈H−(Mn(A)

] ∈H−(Mn(B)).

(ii) It is clear that GX respects intertwinings; compare Example 3.13 (2).
(iii) It remains to see uniform local boundedness. Consider z ∈ H+(Mn(B)), i.e.,

Im z ≥ ε ⋅ 1. As in the proof of Proposition 4.3, we write

(z − 1⊗X)−1

= {Im(z)1/2 [i ⋅ 1 + Im(z)−1/2 ⋅ (Re(z) − 1⊗X) ⋅ Im(z)−1/2] Im(z)1/2}−1

= Im(z)−1/2 [i ⋅ 1 + Im(z)−1/2 ⋅ (Re(z) − 1⊗X) ⋅ Im(z)−1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s.a. operator

]−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥⋅∥≤1 by functional calculus

Im(z)−1/2,

which yields
∥(z − 1⊗X)−1∥ ≤ ∥ Im(z)−1/2∥2 = ∥ Im(z)−1∥.
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Now note that id⊗E has, as a normalized completely positive mapping, norm
1 and thus we have

∥G(n)
X (z)∥ = ∥ id⊗E[z − 1⊗X)−1]∥

≤ ∥(z − 1⊗X)−1∥
≤ ∥ Im(z)−1∥

≤ 1
ε

since Im z ≥ ε ⋅1. Now we are ready to consider w ∈ B(z, ε/2), say w ∈Mmn(B).
According to the calculations in the proof of Proposition 4.4 we have

Imw ≥ Im z(m) − ε ⋅ 1 ≥ ε2 ⋅ 1, and thus ∥GX(w)∥ ≤ ∥ Im(w)−1∥ ≤ 2
ε

;

hence we have a local uniform bound.

4.2 Positivity and boundedness properties of
non-commutative distributions

Remark 4.6. (1) In the scalar-valued case, i.e., B = C, all relevant information
about distributions, i.e., probability measures, is encoded in the Cauchy trans-
form; in particular we have
(i) weak convergence of probability measures corresponds to pointwise con-

vergence of the Cauchy transforms;
(ii) there are precise characterizations when an analytic function is a Cauchy

transform.
(2) There are kind of analogues of this in the operator-valued case. Of course,

now we are essentially encoding information about moments. Note that in
the scalar-valued case moments describe probability measures uniquely if the
latter are compactly supported, which corresponds to bounded operators. In
the operator-valued case we restrict for now to bounded operators (in our
C∗-probability spaces), thus to the non-commutative analogue of compactly
supported measures. In the scalar case we can deal with any probability
measure (via analytic tools, not via moments), in the operator-valued case the
unbounded situation is quite unclear.

(3) Note that a compactly supported measure on the level of moments is charac-
terized by
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(i) positive definiteness of moments, in the sense that

∫ p(t)p(t)dµ(t) ≥ 0 for any polynomial C[t];

(ii) and exponential boundedness of moments: if suppµ ⊂ [−M,M] then

∣mn∣ = ∣ ∫ tndµ(t)∣ ≤ ∫ ∣t∣ndµ(t) =
M

∫
−M

∣t∣ndµ(t) ≤Mn.

We will now define non-commutative distributions abstractly via moments via
such properties

Definition 4.7. (1) Let B be a unital algebra. We denote by B⟨x⟩ the polynomi-
als in the formal variable x with coefficients from B, i.e., the free product of
C⟨x⟩ and B, with amalgamation over C ⋅ 1. Elements in B⟨x⟩ are thus linear
combinations of monomials of the form

b0xb1x⋯bk−1xbk for k ∈ N0, b0, . . . , bk ∈ B.

The elements in B, corresponding to k = 0, are the constant polynomials. If B
is a ∗-algebra, then B⟨x⟩ becomes a ∗-algebra, too, by declaring x∗ = x, i.e.,

(b0xb1x⋯bk−1xbk)∗ = b∗kxb∗k−1⋯xb∗1xb∗0.

(2) If B is a unital C∗-algebra, then a B-valued distribution is a linear map µ ∶
B⟨x⟩ → B sucht that:
(i) µ is unital, µ(1) = 1;
(ii) µ is a B-B-bimodule map, i.e.,

µ(bp(x)b′) = bµ(p(x))b′ for all p(x) ∈ B⟨x⟩, b, b′ ∈ B;

(iii) µ is completely positive, i.e.,

µ(n)(p(x)∗p(x)) ≥ 0 for all n ∈ N and all p(x) ∈Mn(B⟨x⟩),

where µ(n) is, as usual, the amplification id⊗µ.
We denote the set of all B-valued distributions by ΣB.
µ ∈ ΣB is exponentially bounded if there exists M > 0 such that we have for all
n ∈ N0 and all b1, . . . , bn ∈ B that

∥µ(xb1xb2⋯xbnx)∥ ≤Mn+1∥b1∥⋯∥bn∥.

We write then µ ∈ Σ0
B.
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(3) If (A,B,E) is a B-valued C∗-probability space and X = X∗ ∈ A, then the
(B-valued) distribution µX ∶ B⟨x⟩ → B of X is given by

µX(p(x)) = E[p(X)] for all p(x) ∈ B⟨x⟩.

Remark 4.8. Σ0
B should consist of all possible B-valued distributions of selfadjoint

random variables X in B-valued C∗-probability spaces. That µX ∈ Σ0
B for such X is

clear (see Exercise 13), that we also have the other direction is the main content of
the following theorem of Popa and Vinnikov [PV].

Theorem 4.9 (Popa,Vinnikov 2013). For a unital C∗-algebra B the following are
equivalent for a linear map µ ∶ B⟨x⟩ → B.
(i) µ ∈ Σ0

B.
(ii) There exists a B-valued C∗-probability space (A,B,E) and a selfadjoint X ∈ A

such that µX = µ.

Rough sketch of the proof. In the scalar-valued case we realizeX via left-multiplication
by x on C⟨x⟩ via GNS-like construction. Now we do an operator-valued version of
this, i.e., we put on B⟨x⟩ a B-valued inner product by

⟨p(x), q(x)⟩µ ∶= µ(p(x)∗q(x)) ∈ B.

This gives on B⟨x⟩ a (C-valued) norm

∥p(x)∥µ ∶= ∥⟨p(x), p(x)⟩µ∥1/2
B .

Completing B⟨x⟩ with respect to this gives a Banach space B⟨x⟩
µ
. B⟨x⟩ acts on

this space via left multiplications. Checking a couple of technical details shows then
that this action is bounded and adjointable and thus generates a C∗-algebra A. Let
X ∈ A be multiplication with x. We also have a conditional expectation E ∶ A → B
given by E[A] ∶= ⟨1,A1⟩µ. With respect to this, X has distribution µ:

E[b0Xb1⋯bnXbn+1] = ⟨1, b0Xb1⋯bnXbn+11⟩µ
= ⟨1, b0Xb1⋯bnXbn+1⟩µ
= µ(1b0Xb1⋯bnXbn+1)
= µ(b0Xb1⋯bnXbn+1).
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4.3 Moments and Cauchy transform
Remark 4.10. (1) Since GX depends only on the distribution µX of X, we can also

write GX = Gµ for µX = µ.
(2) As in the classical case the moments of X should be the coefficients in the

power series expansion of GX in z−1 about infinity. To formulate this nicely,
it is better to go over to the function HX(z) ∶= GX(z−1).

Proposition 4.11. Let (A,B,E) be a B-valued C∗-probability space and X = X∗ ∈
A. Then the function

HX ∶H−(Bnc) →H−(Bnc), z ↦HX(z) ∶= GX(z−1)

is a fully matricial function which has a fully matricial extension to a uniform
neighbourhood of 0 and we have

E[b0Xb1⋯bn−1Xbn] = ∂n+1HX(0, . . . ,0) ♯(b0, b1, . . . , bn).

Proof. We have, uniformly in all n (where we just write X instead of 1⊗X and E
instead of id⊗E):

HX(z) = GX(z−1) = E[(z−1 −X)−1] = z ⋅E[(1 −Xz)−1] = z∑
k≥0

E[(Xz)k],

where the sum converges uniformly for ∥z∥ < 1/∥X∥. Thus HX has an extension to
B(0,1/∥X∥).
Note (see Exercise 7) that we have in general that ∂n+1HX(0, . . . ,0) ♯(b0, . . . , bn) is
the upper right entry in HX(z), where

z ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 b0 0 . . . 0 0
0 0 b1 ⋯ 0 0
⋮ ⋮ ⋱ ⋱ 0 0
0 0 0 ⋱ bn−1 0
0 0 0 ⋯ 0 bn
0 0 0 ⋯ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Since z is nilpotent we can use the expansion HX(z) = z∑k≥0E[(Xz)k] to calcu-
late HX(z) in this case; the series will stop after the term k = n. Let us evaluate
the cases n = 0 and n = 1.
For n = 0 we have

HX (0 b0
0 0) = (0 b0

0 0) , and thus ∂HX(0,0) ♯ b0 = b0 = E[b0].
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For n = 1 we have

HX

⎛
⎜
⎝

0 b0 0
0 0 b1
0 0 0

⎞
⎟
⎠
=
⎛
⎜
⎝

0 b0 0
0 0 b1
0 0 0

⎞
⎟
⎠
+
⎛
⎜
⎝

0 b0 0
0 0 b1
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

E[X] 0 0
0 E[X] 0
0 0 E[X]

⎞
⎟
⎠

⎛
⎜
⎝

0 b0 0
0 0 b1
0 0 0

⎞
⎟
⎠

=
⎛
⎜
⎝

0 b0 b0E[X]b1
0 0 b1
0 0 0

⎞
⎟
⎠
,

and thus
∂2HX(0,0,0) ♯(b0, b1) = b0E[X]b1 = E[b0Xb1].

The case of general n works in the same way.

4.4 Analytic characterization of Cauchy
transforms

Remark 4.12. (1) In addition to the analyticity property from Proposition 4.11,
our Cauchy transforms GX have also a specific leading order for z →∞, namely

GX(z) = z−1 +⋯ or HX(z) = z +⋯

or more precisely: zkGX(zk) → 1 in Mn(B) for any sequence (zk)k in Mn(B)
for which ∥z−1

k ∥ ↘ 0. Those properties are sufficient to characterize Cauchy
transforms Gµ for µ ∈ Σ0

B, as shown in the following theorem of John Williams
[Wil].

(2) Recall first the classical scalar-valued version: Let g ∶ C+ → C− be an analytic
function such
(i) iyg(iy) → 1 as R ∋ y →∞
(ii) and h(z) ∶= g(1/z) has an analytic continuation to a neighborhood of 0.
Then there exists a (uniquely determined) compactly supported Borel proba-
bility measure µ on R such that g = Gµ, i.e.,

g(z) = ∫
1

z − tdµ(t).

Note that without (ii) this gives a characterization of Gµ for arbitrary proba-
bility measures on R.

42



Theorem 4.13 (Williams 2017). Let B be a unital C∗-algebra and g = (g(n))n∈N be
a fully matrical function g ∶H+(Bnc) →H−(Bnc) such that
(i) for any n ∈ N and for any sequence (zk)k∈N with zk ∈Mn(B) and which satisfies

limk→∞ ∥z−1
k ∥ = 0 we have

lim
k→∞

zkg
(n)(zk) = 1 in Mn(B);

(ii) the fully matricial function h = (h(n))n∈N, with h(n)(z) ∶= g(n)(z−1), has a fully
matricial extension to a uniform neighborhood of 0.

Then g = Gµ for some µ ∈ Σ0
B.

Sketch of proof. According to Proposition 4.11 we define the distribution by

µ(b0xb1⋯bnxbn) ∶= ∂n+1h(0, . . . ,0) ♯(b0, b1, . . . , bn).
One has to check that this has all the properties required in Definition 4.7 for Σ0

B.
Exponential boundenness comes from uniform boundedness of h; furthermore we

have

µ(b) = ∂h(0,0) ♯ b =
d

dt
h(0 + tb)∣t=0 = lim

t→0

h(tb)
t

= lim
t→0

b ⋅ (tb)−1g((tb)−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→1

= b,

and thus: µ∣B = id. From this and complete positivity follows by general arguments
the bimodule property.
The main problem is to show the positivity property. We reduce the problem to

the scalar-valued version by applying states. For this note that

b ∈ B positive ⇐⇒ φ(b) ≥ 0 for all states φ ∶ B → C.

Hence we consider, for a state φ,

φ(g(ξ ⋅ 1)) ∶ C→ C

as a function in ξ ∈ C; it satisfies the classical characterizing properties of a Cauchy
transform, hence

φ(g(ξ ⋅ 1)) = ∫
1

ξ − tdµφ(t)

for some probability measure µφ. But the coefficients in the expansion about ∞ for
this are φ(E[Xk]), hence the E[Xk] are under all φ a positive definite sequence in
C, and thus the E[Xk] themselves are positive definite in B. In order to get this
also for general moments in B⟨x⟩ one has to consider matrix versions of this and
apply states φ to the (1,1)-entry of matrices in Mn(B).
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5 Operator-Valued Freeness
In order to be able to say something more on operator-valued distributions we need
more structure in the distribution. The most prominent case is given by variables
which are free. It is crucial that we have an operator-valued version of free prob-
ability theory, which behaves nicely with respect to matrix amplifications. This
operator-valued freeness will be presented here and will play a main role in most of
the coming chapters. Operator-valued free probability theory is, as its scalar-valued
version, due to Voiculescu [Voi95]. Our presentation of operator-valued freeness is
mainly based on [Sp, MSp].

5.1 Definition and basic properties of
operator-valued freeness

Definition 5.1. (1) Let (A,B,E) be an operator-valued probability space. Sub-
algebras B ⊂ Ai ⊂ A, i ∈ I, are called free if E[a1⋯ak] = 0, whenever we
have:

○ k ∈ N;
○ aj ∈ Aij , with ij ∈ I, for all j = 1, . . . , k;
○ E[aj] = 0 for all j = 1, . . . , k;
○ i1 /= i2 /= i3 /= ⋅ ⋅ ⋅ /= ik−1 /= ik (neighboring elements are from different
subalgebras).

Instead of free we will also say freely independent, or more precisely free with
respect to E or free (with amalgamation) over B or similar phrases.

(2) Random variables Xi ∈ A, i ∈ I, are free if the corresponding subalgebras

B⟨Xi⟩ ∶= algebra generated by X and B = {p(Xi) ∣ p(x) ∈ B⟨x⟩}

are free

Proposition 5.2. If Ai, i ∈ I, are free then E is on the algebra generated by all Ai
determined by the restrictions E∣Ai for all i ∈ I and by the freeness condition.
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Proof. The algebra generated by all Ai consists of elements which are linear com-
binations of a1⋯ak where k ∈ N0, aj ∈ Aij with ij ∈ I; we an also assume that
i1 /= i2 /= ⋅ ⋅ ⋅ /= ik. Consider such a1⋯ak. We have to show that E[a1⋯ak] is deter-
mined by E∣Ai (i ∈ I). We do this by induction. The case k = 0 (E[1] = 1) and k = 1
are clear (as a1 ∈ Ai1).
Consider now general k. We put

aoj ∶= aj − E[aj]
²
∈B⊂Aij

∈ Aij , then E[aoj] = 0.

We get then

E[a1⋯ak] = E[(ao1 +E[a1])⋯(aok +E[ak])] = E[ao1⋯aok] + rest.

The first term vanishes by the definition of freeness and the rest-term is a sum of
terms of smaller length, which are already determined by the induction hypothesis.

Example 5.3. (1) Consider a1 ∈ A1 and a2 ∈ A2. Then we have

0 = E[(a1 −E[a1])(a2 −E[a2])]

= E[a1a2] −E[a1 ⋅E[a2]] −E[E[a1] ⋅ a2] +E[E[a1] ⋅E[a2]]

The three last terms are actually all equal to E[a1] ⋅ E[a2], which leads to
E[a1a2] = E[a1] ⋅E[a2].

(2) Consider a1, ã2 ∈ A1 and a2 ∈ A2. Then we have

0 = E[(a1 −E[a1])(a2 −E[a2])(ã1 −E[ã1])]

= E[a1a2ã1] −E[a1 ⋅E[a2] ⋅ ã1] + six other terms which cancel.

Thus we obtain E[a1a2ã1] = E[a1E[a2]ã1]. This cannot be factorized further,
as E[a2] ∈ B does in general not commute with a1 or ã1. However, this is okay,
as E[a2] ∈ B and hence a1E[a2]ã1 ∈ A1, so E[a1E[a2]ã1] is a moment which
is determined by E[a2] and by E∣A1 .

(3) For a1, ã1 ∈ A1 and a2, ã2 ∈ A2 one calculates in the same way

E[a1a2ã1ã2] = E[a1E[a2]ã1]⋅E[ã2]+E[a1]⋅E[a2E[ã1]ã2]−E[a1]E[a2]E[ã1]E[ã2].
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Remark 5.4. (1) If B = C and E = ϕ, then ϕ(a) commutes with everything and
we can factorize the final results, like

ϕ(a1a2ã1) = ϕ(a1ϕ(a2)ã1) = ϕ(a1ã1)ϕ(a2),

and we get the formulas from usual (scalar-valued) free probability.
(2) Note: on the level of moments, operator-valued freeness works like scalar-

valued freeness, but one has to keep the original order of the elements.
(3) Note also that with respect to E ∶ A → B the “non-commutative scalars” B are

free from any subalgebra.
(4) For a random variable X ∈ A, the restriction of E to B⟨X⟩ is exactly the

information about the moments of X. Hence Proposition 5.2 says in this case
that the joint moments of free variables Xi (i ∈ I) are determined by the
moments of the individual variables.
For example, for X and Y free we have

E[XbY ] = E[X] ⋅ b ⋅E[Y ] = E[Xb] ⋅E[Y ] = E[X] ⋅E[bY ]

and
E[Xb1Y b2X] = E[Xb1 ⋅ E[Y ]

²
moment

of Y

⋅b2X]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
moment of X

.

(5) Note that Proposition 5.2 gives us essentially a free product construction on
an algebraic level. Since we want to do our constructions on an analytic
C∗-probability level, we should extend our abstract notion of B-valued distri-
butions from Definition 4.7 from the case of one variable to the multivariate
case.

5.2 B-valued joint distributions
Definition 5.5. (1) Let B be a unital C∗-algebra. We denote by B⟨xi; i ∈ I⟩ the

non-commutative polynomials in the formal variables xi (i ∈ I) with coefficients
from B; they are linearly spanned by monomials of the form

b0xi1b1xi2⋯bk−1xikbk with k ∈ N0; b0, . . . bk ∈ B; i1, . . . , ik ∈ I.

This becomes a ∗-algebra by declaring x∗i = xi for all i ∈ I.
(2) A B-valued (joint) distribution is a linear map µ ∶ B⟨xi; i ∈ I⟩ → B such that
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(i) µ(1) = 1;
(ii) µ is a B-B-bimodule map;
(iii) µ is completely positive, i.e.,

id⊗µ(p∗p) ≥ 0 for all n ∈ N and p = p(xi; i ∈ I) ∈Mn(B⟨xi; i ∈ I⟩);

(iv) µ is exponentially bounded, i.e., there exists M > 0 such that for all
k ∈ N0, b1, . . . , bk−1 ∈ B, i1, . . . , ik ∈ I the following holds:

∥µ(xi1b1xi2⋯bk−1xik∥ ≤Mk∥b1∥⋯∥bk∥.

We denote

ΣI
B ∶= {µ satisfying (i), (ii), (iii)}, ΣI,0

B ∶= {µ ∈ ΣI
B, satisfying also (iv)}.

(3) If (A,B,E) is a B-valued C∗-probability space and Xi = X∗
i ∈ A for all i ∈ I,

then the B-valued joint distribution µ(Xi;i∈I) ∈ ΣI,0
B is given by

µ(Xi;i∈I)(p(xi; i ∈ I)) ∶= E[p(Xi; i ∈ I)] for all p(xi; i ∈ I) ∈ B⟨xi; i ∈ I⟩.

Theorem 5.6. For a unital C∗-algebra B and for a linear map µ ∶ B⟨xi; i ∈ I⟩ → B
the following are equivalent.
(i) µ ∈ ΣI,0

B .
(ii) There exist a B-valued C∗-probability space (A,B,E) and Xi = X∗

i ∈ A for
each i ∈ I sucht that µ = µ(Xi;i∈I).

“Proof”. This can be done as in the proof of Theorem 4.9, or it can also be reduced
(at least for ∣I ∣ < ∞) directly to Theorem 4.9 with the usual matrix trick by taking
a diagonal matrix X, where the Xi are sitting on the diagonal.

5.3 Compatibility of operator-valued freeness
with matrix amplifications

Proposition 5.7. Let (A,B,E) be an operator-valued probability space and let B ⊂
Ai ⊂ A, i ∈ I, be free over B. Then, for any n ∈ N, in the operator-valued probability
space (Mn(A),Mn(B), id⊗E), the subalgebras Mn(B) ⊂Mn(Ai) ⊂Mn(A), i ∈ I, are
free over Mn(B).
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Proof. Consider Aj ∈ Mn(Aij) such that i1 /= i2 /= ⋅ ⋅ ⋅ /= ir and id⊗E[Aj] = 0 for all
j = 1, . . . , r. We have to show that id⊗E[A1⋯Ar] = 0. Write Aj = (a(j)kl )nk,l=1 with
a
(j)
kl ∈ Aij . Then

id⊗E[Aj] = (E[a(j)kl ])k,l = 0

means that all E[a(j)kl ] = 0. For A ∶= A1⋯Ar = (akl)nk,l=1 we have

akl =
n

∑
r1,...,rk−1=1

a
(1)
kr1°

∈Ai1

a
(2)
r1r2±
∈Ai2

⋯ a
(r)
rk−1l²
∈Air

.

For each fixed choice of r1, . . . , rk−1, the factors in the product are coming alternat-
ingly from different subalgebras and each is centred under E. Hence, by the freeness
of the Ai, we get

E[akl] = ∑E[a(1)kr1
a
(2)
r1r2⋯a(r)rk−1l

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0, for all r1, . . . , rk−1

= 0;

but this means that
id⊗A = (E[akl])nk,l=1 = 0.

Remark 5.8. (1) Note that Mn(A) is also a B-valued probability space with re-
spect to tr⊗E, where tr denotes the normalized trace on Mn(C). We are not
claiming freeness in this space – this is actually not true in general.
For example, consider a scalar-valued probability space (A, ϕ). ThenM2(A) is
both a scalar-valued probability space (with respect to tr⊗ϕ) and an operator-
valued probability space (with respect to id⊗ϕ). Freeness with respect to ϕ
goes only over to freeness with respect to id⊗ϕ, but not with respect to tr⊗ϕ.
For example, if a1, ã1 ∈ A1 and a2, ã2 ∈ A2 are free in A, then for

A1 = (a1 0
0 ã1

) ∈M2(A1) and A2 = (a2 0
0 ã2

) ∈M2(A2)

we have

A1A2 = (a1a2 0
0 ã1ã2

)
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and thus on the operator-valued level:

id⊗ϕ[A1A2] = (ϕ(a1a2) 0
0 ϕ(ã1ã2)

)

= (ϕ(a1)ϕ(a2) 0
0 ϕ(ã1)ϕ(ã2)

)

= (ϕ(a1) 0
0 ϕ(ã1)

)(ϕ(a2) 0
0 ϕ(ã2)

)

= id⊗ϕ[A1] ⋅ id⊗ϕ[A2];
on the scalar-valued level, on the other side, we have in general:

tr⊗ϕ(A1A2) =
1
2[ϕ(a1)ϕ(a2) + ϕ(ã1)ϕ(ã2)]

/= 1
2[ϕ(a1) + ϕ(ã1)] ⋅

1
2[ϕ(a2 + ϕ(ã2)]

= tr⊗ϕ(A1) ⋅ tr⊗ϕ(A2).
(2) Note however that, even if in the end we are only interested in moments with

respect to tr⊗E, it is good to know something about the moments with respect
to id⊗E, since those are related by tr⊗E = tr[id⊗E]; i.e., instead of going
directly down to B,

Mn(A)
tr⊗EÐ→ B

we can also decompose this into two steps:

Mn(A)
id⊗EÐ→ Mn(B)

trÐ→ B.
This simple observation will be crucial for our latter investigations!

5.4 Structure of formulas for mixed moments in
free variables

Remark 5.9. (1) We have to understand better the structure of the formulas for
mixed moments in free variables. This is analogous to the scalar-valued case,
in particular non-crossing partitions will feature prominently. For the relevant
definitions and notations in relation with partitions and kernels of multi-indices
we refer to Chapter 2 of the Free Probability Lecture Notes.
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(2) As in the scalar-valued case, we get for “non-crossing moments” a kind of
factorizing into the moments of the individual subalgebras; however, we have
now to respect the nestings of the blocks. This is just an iteration of the
“factorization” from Example 5.3,

E[a1a2ã1] = E[a1 ⋅E[a2] ⋅ ã1] for {a1, ã1} free from a2. (5.1)

For example, consider {a1, a2, a3}, {e1, e2}, c, d which are free with respect to
E. Then we can iterate the factorization (5.1) as follows:

E[a1e1ce2a2da3] = E[(a1E[e1ce2]a2)d(a3)]

= E[a1 E[e1ce2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E[e1E(c)e2]

a2E[d]a3]

= E{a1E[e1E[c]e2]a2E[d]a3}.

We will denote this “factorization” by

Eπ[a1, e1, c, e2, a2, d, a3] for π =

(3) Note that also for “crossing moments” only non-crossing factorizations show
up in the formula expressing it in the individual moments, like in part (3) of
Example 5.3, for {a1, ã1} free from {a2, ã2}:

E[a1a2ã1ã2) = E[a1E[a2]ã1]E[ã2] + E[a1]E[a2E[ã1]ã2] − E[a1]E[a2]E[ã1]E[ã2] .

This is quite relevant in the operator-valued case; whereas in the scalar-valued
situation the meaning of a crossing term like

ϕ (a1, a2, ã1, ã2) = ϕ(a1ã1) ⋅ ϕ(a2ã2)

is clear, there is no canonical definition for

E [a1, a2, ã1, ã2]

in the operator-valued case:

E[a1ã2] ⋅E[a2ã2] /= E[a2ã2] ⋅E[a1ã1]

in general, and there is no nested version which respects the order of the
variables.
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Definition 5.10. (1) Let B ⊂ A be an inclusion of unital subalgebras. A B-
balanced map T ∶ An → B is a C-multilinear map, which satisfies also the
following conditions for all a1, . . . , an ∈ A, b, b′ ∈ B, k = 1, . . . , n − 1:

T (ba1, a2, . . . , anb
′) = bT (a1, a2, . . . , an)b′

T (a1, . . . , akb, ak+1, . . . , an) = T (a1, . . . , ak, bak+1, . . . , an).

(2) For a given sequence Tn ∶ An → B (n ∈ N) of B-balanced maps, we define the
corresponding multiplicative maps Tπ (n ∈ N, π ∈ NC(n)) recursively on the
number of blocks by: T1n ∶= Tn for all n ∈ N; and, for

π = σ ∪ (p + 1, p + 2, . . . , p + q)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

interval block

∈ NC(n)

we set

Tπ(a1, . . . , an) ∶= Tσ(a1, . . . , ap ⋅ Tq(ap+1, . . . , ap+q), ap+q+1, . . . , an).

Note that Tπ is also B-balanced.
Example 5.11. For π = we have

Tπ(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)

= T2(a1 ⋅ T3(a2 ⋅ T2(a3, a4), a5 ⋅ T1(a6) ⋅ T2(a7, a8), a9), a10).

Proposition 5.12. Let (A,B,E) be a B-valued probability space and let B ⊂ Ai ⊂ A,
i ∈ I, be free with respect to E. We denote, for n ∈ N, by En ∶ An → B the B-balanced
map given by En(a1, a2, . . . , an) ∶= E[a1a2⋯an] and by Eπ, for all n ∈ N, π ∈ NC(n),
the corresponding multiplicative map. Consider now aj ∈ Aij for j = 1, . . . , k. If
ker i ∈ P(k) is non-crossing, then

E[a1a2⋯ak] = Eker i(a1, a2, . . . , ak).

Proof. By iteration of (5.1):

E[a1a2ã1] = E[a1 ⋅E[a2] ⋅ ã1] = E (a1, a2, a3) for {a1, ã1} free from a2.
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5.5 Positivity of free product contructions
Proposition 5.13. Let (A,B,E) be a B-valued probability space. Assume that B is
a unital C∗-algebra and A a ∗-algebra. Let ∗-subalgebras B ⊂ Ai ⊂ A, i ∈ I, be free
with respect to E and assume that A is generated by all Ai, i ∈ I, as an algebra. If
E is positive restricted to each Ai then it is also positive on A.
(Recall that “positive” on a ∗-algebra A means that E[aa∗] ≥ 0 for all a ∈ A.)
Proof. (i) As in the proof of Proposition 5.2 one can see by recursion that each

element in A can be written as a linear combination of elements of the form
a1⋯an with

- n ∈ N0 (n = 0 corresponds to elements from B);
- ak ∈ Aik
- i1 /= i2 /= ⋅ ⋅ ⋅ /= in
- E[ak] = 0 for all k = 1, . . . , n.

If a is a sum of such elements and we want to argue that E[aa∗] ≥ 0, then we
have to understand E appplied to a product of two such elements.

(ii) So let us consider two such elements a1⋯an and ã1⋯ãm as above, with ak ∈ Aik
and ãl ∈ Ajl . Then we have

E[a1⋯anã∗m⋯ã∗1] = δnmE[a1E[a2⋯E[anã∗n]⋯ã∗2]ã∗1],

which is only different from 0 if ik = jk for all k = 1, . . . , n.
As an example for the derivation of the above formula consider n =m = 3:

E[a1a2a3ã
∗
3 ã

∗
2 ã

∗
1] = E[a1a2 ⋅ ((a3ã

∗
3)o +E[a3ã

∗
3]) ⋅ ã∗2 ã∗1]

= E[a1 a2E[a3ã
∗
3]ã∗2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(... )o+E[... ]

ã∗1]

= E[a1E[a2E[a3ã
∗
3]ã∗2]ã∗1].

Hence, for the calculation of E[aa∗], if suffices to consider a which are sums
of products of the same lenght and the same i-pattern.

(iii) Consider

a =
r

∑
k=1
a
(k)
1 ⋯a(k)n , where n ∈ N0, r ∈ N, a(k)j ∈ Aij for all k = 1, . . . , r

with i1 /= i2 /= ⋯ /= in and E[a(k)j ] = 0 for all j = 1, . . . , n and k = 1, . . . , r. Then
we have

E[aa∗] =
r

∑
k,l=1

E[a(k)1 ⋯E[a(k)n−1E[a(k)n a
(l)∗
n ]a(l)∗n−1]⋯a

(l)∗
1 ].
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Now note that (E[a(k)n a
(l)∗
n ])k,l is a positive matrix in Mr(B) since E is com-

pletely positive (see Exercise 9). But since B and thus also Mr(B) is a C∗-
algebra, this means that we can write this positive matrix as BB∗ for some
B = (b(k)rn )rk,rn=1 ∈Mr(B), which yields then concretely that

E[a(k)n a
(l)∗
n ] =

r

∑
rn=1

b
(k)
rn b

(l)∗
rn for all k, l = 1, . . . , r.

Thus we can continue our above calculation as follows

E[aa∗] =
r

∑
k,l=1

E[a(k)1 ⋯E[a(k)n−1 ⋅
r

∑
rn=1

b
(k)
rn b

(l)∗
rn ⋅ a(l)∗n−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∑rrn=1E[(a(k)n−1b

(k)
rn )(a(l)n−1b

(l)
rn)∗]

⋯a(l)∗1 ].

Again, (E[(a(k)n−1b
(k)
rn )(a(l)n−1b

(l)
rn )∗])k,l is a positive matrix in Mr(B) and its en-

tries can thus be written in the form

E[(a(k)n−1b
(k)
rn )(a(l)n−1b

(l)
rn )∗] =

r

∑
rn−1=1

b
(k)
rn−1,rnb

(l)∗
rn−1,rn

for some b(k)rn−1,rn ∈ B. Iterating this leads finally to

E[aa∗] =
r

∑
k,l=1

r

∑
r1=1

⋅ ⋅ ⋅
r

∑
rn=1

b
(k)
r1,...,rnb

(l)∗
r1,...,rn

=
r

∑
r1=1

⋅ ⋅ ⋅
r

∑
rn=1

(
r

∑
k=1
b
(k)
r1,...,rn)(

r

∑
l=1
b
(l)
r1,...,rn)

∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

≥ 0.

Theorem 5.14. Let B be a unital C∗-algebra. Let µI ∈ ΣI,0
B be a joint distribution

on B⟨xi; i ∈ I⟩ and µJ ∈ ΣJ,0
B be a joint distribution on B⟨yj; j ∈ J⟩, with I ∩ J = ∅.

Then there exists a uniquely determined µ ∈ ΣI∪J,0
B on B⟨xi, yj; i ∈ I, j ∈ J⟩ such that:

○ µ restricted to B⟨xi; i ∈ I⟩ is µI and µ restricted to B⟨yj; j ∈ J⟩ is µJ ;
○ B⟨xi; i ∈ I⟩ and B⟨yj; j ∈ J⟩ are free with respect to µ.

We write then µ = µI ∗ µJ .
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Proof. As a linear map we can define µ (uniquely!) by the knowledge of µI and
µJ and the freeness condition, by writing each element in B⟨xi, yj; i ∈ I, j ∈ J⟩ as a
linear combination of alternating products of centred elements from B⟨xi; i ∈ I⟩ and
from B⟨yj; j ∈ J⟩. On all such products µ is set to 0, only on constant terms b ∈ B it
is µ(b) = b.
One has then to check the properties (i)-(iv) from Definition 5.5 in order to see

that µ ∈ ΣI∪J,0
B . (i) and (ii) are clear. (iii) on the base level ist just Proposition 5.13;

that it is also true for the matrix amplifications follows from the same proposition,
if we take also into account that freeness between B⟨xi; i ∈ I⟩ and B⟨yj; j ∈ J⟩ goes
also over to matrices, by Proposition 5.7. For (iv) we have to see that we get also
exponential bounds for mixed moments in xi and yj, if they are free, and if we have
such bounds for the xi, i ∈ I, and for the yj, j ∈ J , separateley. We will see this later,
when we have developed more theory for the structure of such mixed moments; see
Example 9.5.

Corollary 5.15. Let B be a unital C∗-algebra. For each p = p(xi; i ∈ I) ∈ B⟨xi; i ∈ I⟩
with p = p∗ we have a corresponding operation p◻ on Σ0

B given by

p◻ ∶ Σ0
B ×⋯ ×Σ0

B´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣I ∣-times

→ Σ0
B, (µi)i∈I ↦ p◻(µi; i ∈ I),

where p◻(µi; i ∈ I) is the distribution of p(xi; i ∈ I) with respect to ∗
i∈I
µi.

Remark 5.16. (1) Note that via matrix amplifications we can also do the same for
all selfadjoint p ∈Mn(B⟨xi; i ∈ I⟩).

(2) ◻ is the generic symbol for an operation with free variables, to be used with
care and imagination; for example, we have the free convolution µ1 ⊞ µ2 for
p(x1, x2) = x1+x2 and the free commutator [µ1◻µ2] for p(x1, x2) = x1x2+x2x1
or the free anti-commutator {µ1 ◻ µ2} for p(x1, x2) = 1

i (x1x2 − x2x1).
(3) In the scalar-valued case, B = C, all those operations p◻ are on the level of

compactly supported probability measures. In the Free Probability Lecture
Notes we saw how to deal with µ1 ⊞ µ2, but we could not address general p◻.
We will see later that in our operator-valued context we have tools for dealing
with such general p◻.
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6 Operator-Valued Free Central
Limit Theorem and
Operator-Valued Semicircular
Elements

Our benchmark distribution of free semicircular variables from Section 1.3 corre-
sponds on the operator-valued level to an operator-valued semicircular element.
This arises also abstractly in the operator-valued theory canonically as the limit
distribution in a free central limit theorem; furthermore, this operator-valued distri-
bution has a very concrete and nice description both on a combinatorial level (via
moments) as well as on an analytic level (via an explicit equation for its operator-
valued Cauchy transform).

6.1 Operator-valued free central limit theorem
Remark 6.1. (1) A central limit theorem asks about the limit distribution of

D1/
√
N(µ ⊞⋯⊞ µ) N→∞Ð→ ?

where D1/
√
N denotes dilation by a factor 1/

√
N . In terms of random variables

the question can be stated as

X1 +⋯ +XN√
N

N→∞Ð→ ?

if Xi are free and identically distributed (f.i.d.).
The relevant convergence is “in distribution”, which means that moments con-
verge. Since moments are elements in B, we also have to specify the type of
convergence there – we will usually take convergence in norm in B.
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(2) The relevant information about the input distribution is the second moment
(first moments are assumed to be zero); in the operator-valued case the second
moment is given by a mapping η ∶ B → B with η(b) ∶= E[XbX].
In a C∗-setting E, and thus also η, must be completely positive: for (bij)ni,j=1 ∈
Mn(B) we have

id⊗E[1⊗X ⋅ (bij)ni,j=1 ⋅ 1⊗X] = (E[XbijX]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

η(bij)

)ni,j=1 = id⊗η((bij)ni,j=1),

and thus: id⊗η(bb∗) = id⊗E[(1⊗X ⋅ b)(1⊗X ⋅ b)∗] ≥ 0.
We also have that every completely positive η can show up as second moment
of a µ ∈ Σ0

B, see Exercise 16.
(3) Much of the calculations for the central limit theorem and description of the

limit are similar to the scalar-valued situation (see Chapter 2 of the Free
Probability Lecture Notes). Let us first check the calculation of the moments
in the limit.
We consider (Xi)i∈N which are f.i.d. with respect to E. We also assume that

○ Xi centred: E[Xi] = 0 for all i ∈ N;
○ second moments are given by η ∶ B → B: E[XibXi] = η(b) for all i ∈ N
and all b ∈ B.

Then we put SN ∶= (X1 +⋯ +XN)/
√
N and calculate its moments.

E[SNb1SNb2⋯SNbk−1SN] = 1
Nk/2 ∑

i∶[k]→[N]
E[Xi(1)b1Xi(2)⋯Xi(k−1)bk−1Xi(k)]

= 1
Nk/2 ∑

π∈P(k)
∑

i∶[k]→[N]
ker i=π

E[Xi(1)b1Xi(2)⋯Xi(k−1)bk−1Xi(k)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶g(π)
depends only on ker i by Prop. 5.2

= 1
Nk/2 ∑

π∈P(k)
g(π) ⋅#{i ∶ k → [N] ∣ ker i = π}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∼N#π

.

Now observe that if π has a singleton, then g(π) = 0; because we have E[Xi] = 0
and by the factorization (5.1). This implies then that only π ∈ P(k) without
singleton contribute; for those we have necessarily #π ≤ k/2. Now we have
enough information to go to the limit N → ∞. There only π with #π = k/2
survive; but those have to be pairings π ∈ P2(k).
If π is crossing, then the definition of freeness (and interval stripping) gives
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g(π) = 0; here is an example which illustrates this:

g( ) = E[X1b1X2b2X1b3X3b4X3b5X2]

= E[X1b1±
X2b2±

X1b3E[X3b4X3]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b5X2±
] (alternating and centred)

= 0

So we get for our moment in the limit:

lim
N→∞

E[SNb1SNb2⋯SNbk−1SN] = ∑
π∈NC2(k)

g(π).

Up to this point we just repeated the arguments for the scalar-valued case. But
now there will be a difference, namely g(π) is not the same for all π ∈ NC2(k).
We have

g( ) = E[X1b1X1] = η(b1)

g( ) = E[X1b1X1b2X2b3X2] = E[E[X1b1X1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

η(b1)

b2E[X2b3X2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

η(b3)

] = η(b1)b2η(b3)

g( ) = E[X1b1X2b2X2b3X1] = E[X1b1E[X2b2X2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

η(b2)

b3X1] = η(b1η(b2)b3)

Thus the limit variable S has moments

E[Sb1S] = η(b1), E[Sb1Sb2Sb3S] = η(b1)b2η(b3) + η(b1η(b2)b3)

and in general

E[Sb1S⋯Sbk−1S] = ∑
π∈NC2(k)

ηπ(b1, . . . , bk−1),

where ηπ ∶ Bk−1 → B is the C-multilinear map given by

ηπ(b1, . . . , bk−1) = Eπ[Xib1,Xib2, . . . ,Xibk−1,Xi].

59



(4) Note that even in the case where all b1, . . . , bk−1 are equal to 1, the contributions
of the ηπ(1,1, . . . ,1) are different in general.

η (1,1,1) = η(1) ⋅ 1 ⋅ η(1) = η(1)2, η (1,1,1) = η(1 ⋅ η(1) ⋅ 1) = η(η(1)).

Note that η does not need to be unital: η(1) /= 1 in general.
Let us collect our observations in the following theorem.

Theorem and Definition 6.2. Let (A,B,E) be a B-valued C∗-probability space.
Consider selfadjoint Xi ∈ A, i ∈ N, which are f. i. d. (free and identically distributed)
with

○ E[Xi] = 0 for all i ∈ N;
○ E[XibXi] = η(b) for all i ∈ N and b ∈ B, for a completely positive η ∶ B → B.

Put SN ∶= (X1 + ⋯ +XN)/
√
N . Then µSN converges in distribution for N → ∞ to

νη ∈ Σ0
B, which is given by

νη(b0xb1⋯bk−1xbk) = ∑
π∈NC2(k)

b0ηπ(b1, . . . , bk−1)bk (6.1)

for k ∈ N and b0, . . . , bk ∈ B. In particular, this says that all odd moments are zero.
Such a distribution νη ∈ Σ0

B, given by (6.1), is called B-valued semicircular distri-
bution, with covariance η. A selfadjoint element S with µS = νη is called (B-valued)
semicircular element.

6.2 Some basic properties of operator-valued
semicircular elements

Remark 6.3. (1) Note that this definition is compatible with amplifications: if
S is a semicircular element in (A,B,E) with covariance η ∶ B → B, then
1 ⊗ S is a semicircular element in (Mn(A),Mn(B), id⊗E) with covariance
id⊗η ∶ Mn(B) → Mn(B). For a more general version of this see also Exercise
17.

(2) Let us check that indeed νη ∈ Σ0
B, i.e., that we have positivity and exponential

boundedness. On can do this by contructing bounded operators on the full
Fock space which have νη as distribution (for this see Exercise 19). We do it
here more abstractly.
(i) positivity

Since positivity is preserved in a central limit, we only need a distribution
µ ∈ Σ0

B which has first moment zero and second moment given by η. In
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Exercise 16 we construct such a distribution, an operator-valued Bernoulli
element.

(ii) exponential boundedness
We have to estimate the norm of

νη(xb1⋯bk−1x) = ∑
π∈NC2(k)

ηπ(b1, . . . , bk−1)

for k = 2m even. Note first that η as a positive map is bounded, i.e.,

∥η(b)∥ ≤ ∥η∥ ⋅ ∥b∥ for all b ∈ B, where ∥η∥ < ∞.

This implies that we have for each π ∈ NC2(2m)

∥ηπ(b1, . . . , bk−1)∥ ≤ ∥η∥m ⋅ ∥b1∥⋯∥b2m−1∥.

As an illustration for this let us have a look on the estimates for the two
contributions of order 4:

η (b1, b2, b3) = ∥η(b1) ⋅ b2 ⋅ η(b3)∥
≤ ∥η(b1)∥ ⋅ ∥b2∥ ⋅ ∥η(b3)∥
≤ ∥η∥2 ⋅ ∥b1∥ ⋅ ∥b2∥ ⋅ ∥b3∥

and

η (b1, b2, b3) = ∥η(b1 ⋅ η(b2) ⋅ b3)∥
≤ ∥η∥ ⋅ ∥b1 ⋅ η(b2) ⋅ b3∥
≤ ∥η∥ ⋅ ∥b1∥ ⋅ ∥η(b2)∥ ⋅ ∥b3∥
≤ ∥η∥2 ⋅ ∥b1∥ ⋅ ∥b2∥ ⋅ ∥b3∥

Thus – by also using the fact that the number of elements of NC2(2m)
is given by the m-th Catalan number, which is smaller than 4m – we can
now get our exponential bound:

∥νη(xb1⋯bk−1x)∥ ≤ #NC2(2m) ⋅ ∥η∥m ⋅ ∥b1∥⋯∥b2m−1∥

≤ 22m∥η∥m
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2∥η∥)2m

⋅∥b1∥⋯∥b2m−1∥.

61



(3) In (1) we said that if S is B-valued semicircular, then

1⊗ S =
⎛
⎜⎜⎜
⎝

S 0 . . . 0
0 S ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ S

⎞
⎟⎟⎟
⎠

is also semicircular, over Mm(B). This is true more general; if we have free
semicircular elements over B and put linear combinations of them as entries
into an selfadjoint m ×m-matrix, then this is an Mm(B)-valued semicircular
element. The proof can be done by using our free central limit theorem. Let
us elaborate on this via the example

S = ( 0 S1
S1 S2

) ,

where S1 and S2 are free and semicircular over B, with covariances η1 and η2,
respectively. Then we can realize S1 and S2 as

S1 = lim
N→∞

X1 +⋯ +XN√
N

, S2 = lim
N→∞

Y1 +⋯ + YN√
N

,

where all Xi, Yj are free and E[Xi] = 0 = E[Yj], E[XibXi] = η1(b), E[YjbYj] =
η2(b). This gives us for S the realization

S = lim
N→∞

( 0 (X1 +⋯ +XN)/
√
N

(X1 +⋯ +XN)/
√
N (Y1 +⋯ + YN)/

√
N

)

= lim
N→∞

1√
N

[( 0 X1
X1 Y1

) +⋯ + ( 0 XN

XN YN
)]

The summands in the last sum are f. i. d. with respect to id⊗E with vanish-
ing first moment, and thus, by our central limit theorem, S is an M2-valued
semicircular element. Its variance η is given by the second moment

η (b11 b12
b21 b22

) = id⊗E [( 0 S1
S1 S2

)(b11 b12
b21 b22

)( 0 S1
S1 S2

)]

= id⊗E ( S1b22S1 S1b21S1 + S1b22S2
S1b12S1 + S2b22S1 S1b11S1 + S2b21S1 + S1b12S2 + S2b22S2

)

= (η1(b22) η1(b21)
η1(b12) η1(b11) + η2(b22)

)
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6.3 Equation for the Cauchy transform of the
semicircle

Remark 6.4. In order to derive an equation for the Cauchy transform of νη we are
looking for recursions among the moments. Consider, with µS = νη,

E[Sb1Sb2⋯b2m−1S] = ∑
π∈NC2(2m)

ηπ(b1, . . . , b2m−1).

We write π ∈ NC2(2m) in the form π = (1, l)∪π1 ∪π2, where necessarily l = 2k even.

1 l 2m
. . . . . .

π1 π2

π

In this parametrization we can express ηπ as

ηπ(b1, . . . , b2m−1) = Eπ[Sb1, . . . Sbl−1, Sbl, S . . . b2m−1, S

π1 π2

]

= η(Eπ1[b1S, . . . , Sbl−1]) ⋅Eπ2[blS, . . . , b2m−1S]

Thus

E[Sb1⋯b2m−1S] =
m

∑
k=1

∑
π1∈NC2(2(k−1))
π2∈NC2(2(m−k))

η(Eπ1[b1S, . . . , Sb2k−1]) ⋅Eπ2[b2kS, . . . , b2m−1S]

=
m

∑
k=1

η( ∑
π1∈NC2(2(k−2))

Eπ1[b1S, . . . , Sb2k−1]) ⋅ ∑
π2∈NC2(2(m−k))

Eπ2[b2kS, . . . , b2m−1S]

=
m

∑
k=1
η(E[b1S⋯Sb2k−1]) ⋅E[b2kS⋯Sb2m−1S].

Consider now the operator-valued Cauchy transform (on the base level)

G ∶= GS ∶H+(B) →H−(B); z ↦ G(z) = E[(z − S)−1].
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For large ∥z∥ we have

G(z) = z−1 ∑
m≥0

E[(Sz−1)2m]

= z−1 + z−1 ∑
m≥1

E[(Sz−1)2m]

= z−1 + z−1 ∑
m≥1

m

∑
k=1
η(z−1E[(Sz−1)2(k−1)]) ⋅ z−1E[(Sz−1)2(m−k)]

= z−1 + z−1 ⋅ η(
∞
∑
k=1
z−1E[(Sz−1)2(k−1)]) ⋅ (

∞
∑

m−k=0
z−1 ⋅E[(Sz−1)2(m−k)])

= z−1 + z−1 ⋅ η(G(z)) ⋅G(z),

or equivalently
zG(z) = 1 + η(G(z)) ⋅G(z). (6.2)

So we conclude: G(z) satisfies for large ∥z∥ the Equation (6.2); by analytic extension
it must then satisfy (6.2) also for all H+(B).
The same calculation and arguments work also for all matricial amplifications of

G.

6.4 Solution of the equation for the semicircle
Remark 6.5. (1) In the case B = C and the normalization η(z) = z (z ∈ C) –

corresponding to ϕ(S2) = 1 – we get the quadratic equation for the Cauchy
transform GS ∶H+(C) →H−(C) of a scalar-valued semicircle:

zG(z) = 1 +G(z)2. (6.3)

This can be solved explicitly as

G(z) = z ±
√
z2 − 4
2 ,

where we have to choose the “−” sign, since we have for Cauchy transforms
limy→∞ iyG(iy) = 1; see Remark 4.12.
From this explicit form for the Cauchy transform one can derive then via the
Stieltjes inversion formula the semicircle density.
Note that of the two solutions of (6.3) only one, namely G(z), lies in the right
space H−(C), the other solution is in H+(C).
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(2) How can we deal with (6.2) for general B and η. Note first that (6.2) is, in
the case B = Mn(C), actually a system of quadratic equations for the entries
of the n×n-matrix G(z). There are no explicit solutions nor a general theory
for such systems.

(3) Usually there can be many solutions of such equations; we are, however, in-
terested in a solution which lies in H−(B). To get an idea, consider the very
simple example: B =M2(C), η = id, z = z1 ⊕ z2 with z1, z2 ∈ C and we are just
looking for solutions of the form G(z) = w = w1 ⊕ w2 with w1,w2 ∈ C. Then
(6.2) decouples into

z1w1 = 1 +w2
1, z2w2 = 1 +w2

2.

Hence we have two solutions for w1 and two solutions for w2:

w±
1 =

z1 ±
√
z2

1 − 4
2 , w±

2 =
z2 ±

√
z2

2 − 4
2 .

This yields four possible solutions for w, of which only w−
1⊕w−

2 is inH−(M2(C)).
We want to show that this is true in general: of the many possible solutions
there is exactly one in H−(B).

(4) The idea to see this is to rewrite the Equation (6.2) as a fixed point equation:

zG(z) = 1 + η(G(z)) ⋅G(z) ⇔ z = G(z)−1 + η(G(z))

⇔ G(z) = [z − η(G(z))]−1,

i.e., with Fz ∶ w ↦ [z − η(w)]−1 we have that G(z) is a fixed point of Fz.
To see the existence and uniqueness of the fixed point, Fz should be a con-
traction. For large z (i.e., small ∥z−1∥) this is true in operator norm. For
general z ∈H+(B) the operator norm does not work any more, but one gets a
contraction in an “analytic” metric. The following is a kind of general version
of the Schwarz Lemma or Denjoy-Wolff Theorem (for the lattter, see 5.6 and
Assignment 9 of Free Probability Lecture Notes). See also [Har, Kra] for nice
expositions around the Earle–Hamilton Theorem.

Theorem 6.6 (Earle, Hamilton 1968). Let D be a non-empty domain in a complex
Banach space X and let h ∶D →D be a bounded holomorphic function. If h(D) lies
strictly inside D – i.e., there is some ε > 0 such that Bε(h(x)) ⊂D whenever x ∈D –
then h is a strict contraction in some (namely, Carathéodory-Riffen-Finsler) metric
ρ, and thus has a unique fixed point in D. Furthermore, there is a constant m > 0
sucht that one has for all x, y ∈ D that ρ(x, y) ≥ m∥x − y∥, and thus (hn(x0))n∈N
converges also in norm, for any x0 ∈D, to this fixed point.
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We want to apply this to our fixed point equation for the semicircular distribution.
In the next proposition we check that the assumptions of the Earle–Hamilton The-
orem are satisfied in this case. We follow here the original work of Helton, Rashidi
Far, Speicher [HRS].

Proposition 6.7. Let B be a unital C∗-algebra and η ∶ B → B a positive linear map.
For fixed z ∈H+(B) we define the map

Fz ∶ w ↦ Fz(w) ∶= [z − η(w)]−1.

Then we have
(i) Fz ∶H−(B) →H−(B).
(ii) Fz is bounded, with

∥Fz(w)∥ ≤ ∥(Im z)−1∥ for all w ∈H−(B).

(iii) For R > 0 we put
H−
R(B) ∶= {w ∈H−(B) ∣ ∥w∥ < R}.

Then, for R > ∥(Im z)−1∥, we have that Fz(H−
R(B)) lies strictly inside H−

R(B).

Proof. (i) For w ∈H−(B) we have, by the positivity of η, that η(w) ∈H−(B), and
thus −η(w) ∈ H+(B). But then we have, for z ∈ H+(B), that also z − η(w) ∈
H+(B). Taking the inverse moves us then into H−(B).

(ii) In the proof of Theorem 4.5 we have seen (put X = 0 there) that ∥z−1∥ ≤
∥(Im z)−1∥ for z ∈H+(B), and thus also

∥[z − η(w)]−1∥ ≤ ∥[Im(z − η(w))]−1∥.

In order to estimate this further, note

Im(z − η(w)) = Im z − Im η(w)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

≤0

≥ Im z > 0,

which implies
0 < [Im(z − η(w))]−1 ≤ (Im z)−1,

and thus finally
∥[Im(z − η(w))]−1∥ ≤ ∥(Im z)−1∥.
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(iii) Note that (ii) shows that for R > ∥(Im z)−1∥ we have Fz ∶H−
R(B) →H−

R(B). We
have to see that Fz(w) stays away from the boundary of H−

R(B). For the part
∥w∥ = R this is clear, there it stays away at least by an amount R−∥(Im z)−1∥.
In order to see that it also stays away from the “real axis” we need an estimate
for ImFz(w), uniform in w ∈H−

R(B). We have

ImFz(w) = 1
2i[Fz(w) − Fz(w)∗]

= Fz(w)∗ [Fz(w)∗−1 − Fz(w)−1

2i ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Im(z∗−η(w)∗)≤Im z∗

Fz(w)

≤ Fz(w)∗ ⋅ Im z∗ ⋅ Fz(w)

= −Fz(w)∗ ⋅ Im z ⋅ Fz(w).

Let us write the last term, without the minus-sign, in the form

Fz(w)∗ ⋅ Im z ⋅ Fz(w) = [Fz(w)−1 ⋅ (Im z)−1 ⋅ Fz(w)∗−1]−1
.

We estimate now

Fz(w)−1 ⋅ (Im z)−1 ⋅ Fz(w)∗−1 ≤ ∥Fz(w)−1∥2 ⋅ ∥(Im z)−1∥ ⋅ 1

= ∥z − η(w)∥2 ⋅ ∥(Im z)−1∥ ⋅ 1

≤ (∥z∥ + ∥η∥ ⋅ ∥w∥)2 ⋅ ∥(Im z)−1∥ ⋅ 1

≤ (∥z∥ + ∥η∥ ⋅R)2 ⋅ ∥(Im z)−1∥ ⋅ 1.

and thus, by taking the inverse and by noting that Fz(w)−1 ⋅(Im z)−1 ⋅Fz(w)∗−1

is positive:

Fz(w)∗ ⋅ Im z ⋅ Fz(w) ≥ 1
(∥z∥ + ∥η∥ ⋅R)2 ⋅ ∥(Im z)−1∥ ⋅ 1.

Putting everything together gives then the wanted estimate

ImFz(w) ≤ − 1
(∥z∥ + ∥η∥ ⋅R)2 ⋅ ∥(Im z)−1∥ ⋅ 1,

which is independent of w ∈H−(B).
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Theorem 6.8 (Helton, Rashidi Far, Speicher 2007). Let B be a unital C∗-algebra
and η ∶ B → B a positive linear map. For fixed z ∈ H−(B) there exists exactly one
solution w ∈H−(B) to

zw = 1 + η(w) ⋅w. (6.4)

This w is the limit of iterates wn = F n
z (w0) for any w0 ∈ H−(B). Furthermore, we

have that

∥w∥ ≤ ∥(Im z)−1∥ and Imw ≤ − 1
(∥z∥ + ∥η∥ ⋅ ∥(Im z)−1∥)2 ⋅ ∥(Im z)−1∥

⋅ 1.

Proof. By the Earle–Hamilton Theorem 6.6, eachH−
R(B) contains, forR > ∥(Im z)−1∥,

exactly one fixed point of Fz, i.e., a solution to (6.4). (Note that our map Fz is holo-
morphic.) For any w0 ∈ H−(B) we choose R such that w0 ∈ H−

R(B) (i.e., R > ∥w0∥),
then Earle–Hamilton guarantees that F n

z (w0) converges in H−
R(B) to w.

Remark 6.9. (1) Clearly, this solution w from Theorem 6.8 must be the value G(z)
of the Cauchy transform of our operator-valued semicircular element S with
covariance η.

(2) The linearity of η is not essential for the arguments; one can generalize Theo-
rem 6.8 in the same way to the case where η ∶ H+(B) → H+(B) is an analytic
and bounded map.

(3) The theorem does not give estimates for the speed of convergence. In particu-
lar, for small Im z, the convergence can be very slow. One can usually improve
this by taking averages of the iterates. For example, replace w ↦ Fz(w) by
w ↦ Gz(w) ∶= 1

2w+ 1
2Fz(w). Gz has the same fixed point as Fz and mapsH−

R(B)
strictly into its interior. Thus, by Earle–Hamilton, sequences (Gn

z (w0))n∈N
converge also (and usually faster) to the wanted fixed point of Fz.
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7 Matrices of Semicirculars and
Matrix-Valued Semicirculars
(and Block Random Matrices)

Here we want to be a bit more concrete about the relation between matrices of free
semicirculars and matrix-valued semicircular elements. We will here also encounter
the idea that we can consider our matrices both as scalar-valued and as operator-
valued elements. Understanding the relation between these two points of view will be
crucial for applications of operator-valued free probability to random matrix models
with some more structure, like block matrices.

7.1 Matrix-valued semicirculars
Remark 7.1. In Remark 6.3 we have seen that matrices of free semicirculars are
matrix-valued semicirculars. We restrict here to the special case where B = C, i.e.,
the entries of our matrices are scalar-valued free semicirculars. Let us first give the
precise statement for this.

Proposition 7.2. Let (A, ϕ) be a C∗-probability space and S1, . . . , Sd be free stan-
dard semicirculars (i.e., ϕ(S2

i ) = 1). For n ≥ 1 and selfadjoint b1, . . . , bd ∈Mn(C) we
consider

S ∶= b1 ⊗ S1 +⋯ + bd ⊗ Sd ∈Mn(C) ⊗A =̂Mn(A).

Then S is in the matrix-valued C∗-probability space (Mn(A),Mn(C), id⊗ϕ) a matrix-
valued semicircular element with covariance

η ∶Mn(C) →Mn(C) given by η(b) =
d

∑
j=1
bjbbj.

The proof of this is an assignment, Exercise 21.
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7.2 Treating matrix-valued semicirculars as
scalar-valued variables

Remark 7.3. (1) We are now, however, interested in S as a scalar-valued ran-
dom variable in the C∗-probability space (Mn(A), tr⊗ϕ), i.e., instead of the
operator-valued Cauchy transform

GS ∶H+(Mn(C)) →H−(Mn(C)), b↦ GS(b) = id⊗ϕ[(b − S)−1]

we need the scalar-valued Cauchy transform

gS ∶H+(C) →H−(C), z ↦ gs(z) = tr⊗ϕ[(b − S)−1].

Note that for z ∈ C we clearly have

gS(z) = tr[GS(z ⋅ 1)].

So if we can calculate GS, we can from this also get gS.
(2) Note that being semicircular on an operator-valued level does in general not

imply to be semicircular on a scalar-valued level. Let us check this in the next
example.

Example 7.4. Consider, for α,β ∈ R,

S = (αS1 0
0 βS2

) = (α 0
0 0) ⊗ S1 + (0 0

0 β
) ⊗ S2.

Then S is for all α,β anM2(C)-valued semicircular element. However, on the scalar
level we have the second moment

tr⊗ϕ[S2] = 1
2
(α2ϕ(S2

1) + βϕ(S2
2)) =

1
2(α2 + β2);

and if S is semicircular, then its fourth moment must be given by twice the square
of this, i.e., by 2(tr⊗ϕ[S2])2 = (α2 + β2)2/2. On the other hand we can calculate
the fourth moment directly as

tr⊗ϕ[S4] = 1
2
(α4ϕ(S4

1) + β4ϕ(S4
2)) = α4 + β4.

But α4 + β4 = (α2 + β2)2/2 if and only if ∣α∣ = ∣β∣. Thus in general, semicircularity is
not preserved; but there are special cases where it is.
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Theorem 7.5. Consider unital C∗-algebras D ⊂ B ⊂ A with conditional expectations
EB ∶ A → B and ED ∶ A → D which are compatible in the sense that ED ○EB = ED.
Consider a B-valued semicircular element S ∈ A, with covariance η ∶ B → B with
η(b) = EB[SbS]. If η(D) ⊂ D, then S is also a D-valued semicircular element, with
covariance given by the restriction of η to D.

Example 7.6. Before we prove this let us reconsider Example 7.4; there D = C,
B =M2(C), ED = ϕ, EB = id⊗ϕ, and η ∶ B → B is given by

η (b11 b12
b21 b22

) = id⊗ϕ( b11α2S2
1 b12αβS1S2

b21βαS2S1 b22β2S2
2

) = (α
2b11 0
0 β2b22

) .

To check that η(D) ⊂ D we just have to see that η(1) ∈ C; but

η (1 0
0 1) = (α

2 0
0 β2) ∈ C ⋅ 1 if and only if α2 = β2.

One might note that η maps always into diagonal matrices D̃, and thus in this case
S is always a D̃-valued semicircular.
For another example of the application of Theorem 7.5 see Exercise 22.

Proof of Theorem 7.5. We have the Cauchy transforms

G(b) = EB[(b − S)−1] for b ∈H+(B)

and
g(d) = ED[(b − S)−1] for d ∈H+(D).

Note that H+(D) ⊂H+(B) and that

g(d) = EDEB[(d − S)−1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=G(d)

= ED[G(d)].

The main claim is to see that

G(d) ∈ D for all d ∈H+(D); (7.1)

then we have that g(d) = G(d) for all d ∈H+(D) and the equation

bG(b) = 1 + η(G(b)) ⋅G(b) (b ∈H+(B))
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gives for b = d ∈H+(D):
dg(d) = 1 + η(g(d)) ⋅ g(d),

which shows that g is the Cauchy transform of a D-valued semicircular element with
covariance η∣D.
So it remains to prove (7.1). We know, by Theorem 6.8, that we get G(d) ∈H−(B)

as the limit of iterates wn = F n
d (w0) for arbitrary w0 ∈ H−(B), with Fd(w) ∶= (d −

η(w))−1. Now note that since η maps D to D, the map Fd also maps D to D; hence
if we choose w0 ∈ H−(D) ⊂ H−(B) (as we are free to do), all iterates wn, and thus
also their limit G(d), are in D.

7.3 Operator-valued semicirculars as limits of
block random matrices

Remark 7.7. Note the relevance of this for random matrices. If X(N)
1 , . . . ,X

(N)
d are

independent Gaussian N ×N random matrices, then we know (see Chapter 6 of the
Free Probability Lecture Notes) that for N →∞

(X(N)
1 , . . . ,X

(N)
d ) → (S1, . . . , Sd)

in distribution. But this implies that for N →∞

b1 ⊗X(N)
1 +⋯ + bd ⊗X(N)

d → S = b1 ⊗ S1 +⋯ + bd ⊗ Sd

in distribution with respect to trn⊗ trN and trn⊗ϕ, respectively. The matrices
on the left side are nN × nN block random matrices, considered as scalar-valued
random variables. Thus the scalar-valued distribution of S gives us the asymptotic
eigenvalue distribution of the block matrices. See Exercise 20 for an example of this.
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8 Polynomials in Free
Semicirculars and Linearization

Going over to matrices over a non-commutative algebra gives surprising flexibility
in dealing with problems in the algebra. In particular, one can rewrite non-linear
problems in the algebra into linear problems in the matrices. This linearization
idea has tremenduous impact in our context; it allows to reduce the calculation of
polynomials in free variables to the calculation of operator-valued free convolution.
We follow here quite closely the presentation in [HMS, MSp].

8.1 The idea of linearization
Remark 8.1. (1) In Proposition 7.2 we saw that we can deal with linear matrices

S = b1 ⊗ S1 +⋯ + bd ⊗ Sd (b1, . . . , bd ∈Mn(C))
in free semicirculars S1, . . . , Sd. Note that we can also consider “affine” matri-
ces by adding a constant b0 ⊗ 1 =̂ b0 ∈ Mn(C), since this gives only a shift in
the argument of the Cauchy transform:

Gb0+S(b) = id⊗ϕ[(b − (b0 + S))−1] = GS(b − b0).
Since we consider selfadjoint random variables we need b0 = b∗0 and thus we
have

Im(b − b0) = Im b ∈H+(Mn(C)).
So we can calculate GS(b − b0) (at least numerically) and from this also the
scalar-valued Cauchy transform

gb0+S(z) = tr[Gb0+S(z ⋅ 1)] = tr[GS(z ⋅ 1 − b0)].
(2) In Corollary 5.15 we saw that also for arbitrary selfadjoint polynomials p ∈

C⟨x1, . . . , xd⟩ the distribution of this polynomial applied to our free semicircu-
lars, p(S1, . . . , Sd), is uniquely determined; however, up to now it is not clear
how to calculate this. We will now see that we can do this by relating this
problem with a corresponding problem in affine matrices.
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Example 8.2. Let us consider the example

p(x1, x2) = x1x2 + x2x1 + x2
1, i.e., P ∶= p(S1, S2) = S1S2 + S2S1 + S2

1 .

Note that P = P ∗. The distribution of P is given by its Cauchy transform GP (z) =
ϕ[(z−P )−1], for z ∈H+(C). We lift the problem of calculating the inverse now from
the ground level C to matrices by finding there a factorization of P into affine terms

−P = (S1
S1
2 + S2) ⋅ (

0 −1
−1 0 ) ⋅ ( S1

S1
2 + S2

) .

Let us denote

U ∶= (S1
S1
2 + S2) , Q−1 ∶= ( 0 −1

−1 0 ) , V ∶= ( S1
S1
2 + S2

) ,

then we have P = −UQ−1V , where U,Q,V are affine in S1 and S2. This does not
directly give a factorization for P −1, since U and V are not invertible, but we get a
factorization of a lifted version of z − P into invertible factors:

(z − P 0
0 −Q) = (1 −UQ−1

0 1 ) ⋅ ( z −U
−V −Q) ⋅ ( 1 0

−Q−1V 1) .

Since the first and third term are always invertible

(1 A
0 1)

−1

= (1 −A
0 1 ) , ( 1 0

B 1)
−1

= ( 1 0
−B 1) ,

we have

((z − P )−1 0
0 −Q−1) = (z − P 0

0 −Q)
−1

= ( 1 0
Q−1V 1) ⋅ (

z −U
−V −Q)

−1

⋅ (1 UQ−1

0 1 ) .

If we put

P̂ ∶= ( 0 U
V Q

) , Λ(z) ∶= (z 0
0 0) ,

then we have
((z − P )−1 0

0 −Q−1) = ([(Λ(z) − P̂ )−1]1,1 ∗
∗ ∗)

(where [A]1,1 denotes the (1,1)-entry of the 3 × 3-matrix A), i.e.,

(z − P )−1 = [(Λ(z) − P̂ )−1]1,1,
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and thus

GP (z) = ϕ[(z − P )−1] = ϕ{[(Λ(z) − P̂ )−1]1,1} = {id⊗ϕ[(Λ(z) − P̂ )−1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

GP̂ (Λ(z))

}1,1.

Note that

P̂ =
⎛
⎜
⎝

0 S1
S1
2 + S2

S1 0 −1
S1
2 + S2 −1 0

⎞
⎟
⎠

is an affine matrix in free semicirculars, thus an M3(C)-valued semicircular shifted
by a constant, for which we can calculate itsM3(C)-valued Cauchy transform GP̂ (b).
Note also that

Λ(z) =
⎛
⎜
⎝

z 0 0
0 0 0
0 0 0

⎞
⎟
⎠

is not in H+(M3(C)), so our theory from Chapter 6 for solving for GP̂ (Λ(z)) does
not apply directly. But since, by the above calculation, Λ(z) − P̂ is invertible, the
function GP̂ is holomorphic, hence continuous, in a neighborhood of b = Λ(z) and
thus we have

GP̂ (Λ(z)) = lim
ε↘0

GP̂ (Λε(z)), where Λε(z) ∶=
⎛
⎜
⎝

z 0 0
0 iε 0
0 0 iε

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈H+(M3(C))
for all ε > 0

ε↘0Ð→ Λ(z).

8.2 Rigorous theory of linearization
Remark 8.3. The main ingredient in the above calculation was that we can factorize
our polynomial as P = −UQ−1V , with affine U,Q,V . This works for all polynomials
and is actually independent from having semicircular elements as variables. Let us
now do the general case on the level of formal variables, C⟨x1, . . . , xd⟩.

Definition 8.4. Let p ∈ C⟨x1, . . . , xd⟩ be given. A matrix

p̂ = (0 u
v q

) ∈Mn(C⟨x1, . . . , xd⟩),

where
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○ n ∈ N,
○ q ∈Mn−1(C⟨x1, . . . , xd⟩) is invertible as a matrix over polynomials,
○ u ∈M1,n(C⟨x1, . . . , xd⟩) is a row and v ∈Mn,1(C⟨x1, . . . , xd⟩) is a column,

is called a linearization of p, if the following two conditions are satisfied:
(i) p̂ is an affine matrix in x1, . . . , xd, i.e., there are b0, b1, . . . , bd ∈ Mn(C) such

that p̂ = b0 ⊗ 1 + b1 ⊗ x1 +⋯ + bd ⊗ xd;
(ii) p = −uq−1v.

Theorem 8.5. For any polynomial p ∈ C⟨x1, . . . , xd⟩ there exists a linearization. If
p is selfadjoint, then there is also a selfadjoint linearization.

Remark 8.6. Such linearizations are not unique; it is interesting to find minimal
ones, where the matrix size n is as small as possible. Our algorithm in the following
proof will not produce minimal realizations in general.

Proof of Theorem 8.5. (1) For monomials we have linearizations:
(i) for degree 0, p = α (α ∈ C)

p̂ = (0 α
1 −1) ∈M2(C); as α = −α ⋅ (−1)−1 ⋅ 1;

(ii) for degree 1, p = αxi

p̂ = (0 αxi
1 −1 ) ∈M2(C); as αxi = −αxi ⋅ (−1)−1 ⋅ 1;

(iii) for degree k ≥ 2, p = αxi1⋯xik

p̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 0 αxi1
0 0 . . . 0 xi2 −1
0 0 . . . xi3 −1 0
⋮ ⋮ ⋰ ⋰ ⋮ ⋮
0 xik−1 ⋰ 0 0 0
xik −1 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

;

to be concrete, consider for example k = 3:

⎛
⎜
⎝

0 0 αxi1
0 xi2 −1
xi3 −1 0

⎞
⎟
⎠
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note that matrices corresponding to q are always invertible

(xi2 −1
−1 0 )

−1

= ( 0 −1
−1 −xi2

)

and we have

−(0 αxi1) ⋅ (
0 −1
−1 −xi2

) ⋅ ( 0
xi3

) = αxi1xi2xi3 .

(2) If we have linearizations (0 ui
vi qi

) for polynomials pi (i = 1, . . . , r), then their

sum p1 + ⋅ ⋅ ⋅ + pr has a linearization

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 u1 u2 . . . ur
v1 q1 0 . . . 0
v2 0 q2 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
vr 0 0 . . . qr

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Thus we can build linearizations for any polynomial out of linearizations for
its monomials.

(3) If p has a linearization (0 u
v q

), then p∗ has a linearization ( 0 v∗

u∗ q∗
). If p = p∗

we want to take a linearization of p = 1
2(p+p∗). The construction in (2) however

does not give a selfadjoint p̂. Instead we take

1
2
⎛
⎜
⎝

0 u v∗

u∗ 0 q∗

v q 0

⎞
⎟
⎠
.

8.3 Linearization and Cauchy transforms
Remark 8.7. The linearization and the calculations for expressing the Cauchy trans-
form of P in terms of the Cauchy transform of P̂ are independent of the concrete
nature of our random variables, neither freeness nor being semicircular is important.
Thus we have the following.
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Theorem 8.8. Let (A, ϕ) be a C∗-probability space and consider selfadjoint X1,. . . ,Xd

∈ A. For a selfadjoint polynomial p ∈ C⟨x1, . . . , xd⟩ let

p̂ = b0 ⊗ 1 + b1 ⊗ x1 + ⋅ ⋅ ⋅ + bd ⊗ xd, with b0, b1, . . . , bd ∈Mn(C),

be a selfadjoint linearization of p. Put P ∶= p(X1, . . . ,Xd) ∈ A and

P̂ = p̂(X1, . . . ,Xd) = b0 ⊗ 1 + b1 ⊗X1 + . . . bd ⊗Xd ∈Mn(A).

Then we have for z ∈H+(C)

GP (z) = [GP̂ (Λ(z))]1,1 = lim
ε↘0

[GP̂ (Λε))]1,1

with

Λ(z) =
⎛
⎜⎜⎜
⎝

z 0 . . . 0
0 0 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . 0

⎞
⎟⎟⎟
⎠

and
⎛
⎜⎜⎜
⎝

z 0 . . . 0
0 iε . . . 0
⋮ ⋮ ⋱ ⋮
0 0 . . . iε

⎞
⎟⎟⎟
⎠
∈H+(Mn(C)).

Remark 8.9. Thus, in order to deal with polynomials of variables, we need to un-
derstand linear matrices in the variables. If the variables are free semicirculars we
understand linear matrices in them, as they are operator-valued semicirculars. But
how about general free variables: If X1, . . . ,Xd are free, what can we say about
X = b0 ⊗ 1 + b1 ⊗X1 +⋯ + bd ⊗Xd. Note
(i) b0 ⊗ 1 is just a shift of the argument in GX , thus easy to deal with;
(ii) the operator-valued Cauchy transform of bi ⊗Xi is determined (theoretically

and numerically) in terms of the Cauchy transform of Xi;
(iii) if X1, . . . ,Xd are free in (A, ϕ), then b1 ⊗X1, . . . , bd ⊗Xd are, by Proposition

5.7, free in (Mn(A),Mn(C), id⊗ϕ); hence we have to understand how to deal
with sums of free variables on an operator-valued level – i.e., we need to have
a closer look on how to describe operator-valued free convolution.

78



9 Combinatorial and Analytic
Description of Operator-Valued
Freeness: Free Cumulants and
R-Transforms

Up to now we looked on moments and Cauchy transforms. As in the scalar-valued
case it is advantegeous to go over to cumulants and R-transforms. Much of the
theory is the same, modulo “respecting the nesting”, as in the scalar-valued case,
see Chapters 3 and 4 of Free Probability Lecture Notes. We we are not going to
give proofs of the operator-valued statements, but we urge the reader (for example,
in Exercise 24) to check that the scalar-valued arguments are not affected by the
requirement that we now have to respect the nesting.

9.1 Operator-valued free cumulants
Definition 9.1. Let (A,B,E) be an operator-valued probability space. We denote
by En, for n ∈ N, the B-balanced map

En ∶ An → B; (a1, . . . , an) ↦ En(a1, a2, . . . , an) ∶= E[a1a2⋯an],
and by Eπ, for all n ∈ N, π ∈ NC(n), the corresponding multiplicative map Eπ ∶
An → B, for π ∈ NC(n); see Definition 5.10. Then we define the corresponding
(operator-valued) free cumulants κn ∶ An → B by

κn(a1, . . . , an) ∶= ∑
π∈NC(n)

µ(π,1)Eπ(a1, . . . , an), (9.1)

where µ is the Möbius function of NC(n).
Remark 9.2. The κn are also B-balanced and with their multiplicative extension the
Equation (9.1) is equivalent to

E[a1⋯an] = En(a1, . . . , an) = ∑
π∈NC(n)

κπ(a1, . . . , an).
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Example 9.3. (1) For n = 1 we have

E[a1] = κ (a1) = κ1(a1).

(2) For n = 2 we have

E[a1a2] = κ (a1, a2) + κ (a1, a2)
= κ2(a1, a2) + κ1(a1)κ1(a2)
= κ2(a1, a2) +E[a1]E[a2],

and thus
κ2(a1, a2) = E[a1a2]

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
E (a1,a2)

−E[a1]E[a2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
E (a1,a2)

.

(3) For n = 3 we have

E[a1a2a3] = κ (a1, a2, a3) + κ (a1, a2, a3)
+ κ (a1, a2, a3) + κ (a1, a2, a3) + κ (a1, a2, a3).

The interesting term is here

κ (a1, a2, a3) = κ2(a1κ1(a2), a3)

= E[a1E[a2]a3] −E[a1E[a2]] ⋅E[a3]

= E[a1E[a2]a3] −E[a1] ⋅E[a2] ⋅E[a3].

This leads in the end to

κ3(a1, a2, a3) = E[a1a2a3] −E[a1] ⋅E[a2a3] −E[a1a2] ⋅E[a3]

−E[a1E[a2]a3] + 2E[a1] ⋅E[a2] ⋅E[a3].

As in the scalar-valued case (compare 3.23 and 3.24 of Free Probability Lecture
Notes) one proves the following characterization of freeness.

Theorem 9.4 (freeness =̂ vanishing of mixed cumulants). Let (A,B,E) be a B-
valued probability space and (κn)n∈N the corresponding free cumulants.
(1) Consider subalgebras B ⊂ Ai ⊂ A for i ∈ I. Then the following are equivalent.

(i) The subalgebras Ai, i ∈ I, are free with respect to E.
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(ii) Mixed cumulants in the subalgebras vanish, i.e., κn(a1, . . . , an) = 0 when-
ever: n ≥ 2; aj ∈ Aij for j = 1, . . . , n; and there exist 1 ≤ k, l ≤ n such that
ik /= il.

(2) Consider random variables Xi ∈ A for i ∈ I. Then the following are equivalent.
(i) The random variables Xi, i ∈ I, are free with respect to E.
(ii) Mixed cumulants in the random variables vanish, i.e.,

κn(Xi1b1,Xi2b2, . . . ,Xin−1bn−1,Xin) = 0
whenever: n ≥ 2; i1, . . . , in ∈ I; there exist 1 ≤ k, l ≤ n such that ik /= il;
and b1, . . . , bn−1 ∈ B.

Example 9.5. This yields then formulas for the calculation of mixed moments; those
formulas show that mixed moments of free variables are exponentially bounded, if
this is true for of of the variables – thus providing the missing argument for our
proof of Theorem 5.14.
As a concrete calculation, consider for X and Y free the following mixed moment:

E[XYXY ] = ∑
π∈NC(4)

κπ(X,Y,X,Y ).

Because of the vanishing of mixed cumulants in X and Y only non-crossing π with
π ≤ will make a contribution; so we can continue with
E[XYXY ] = κ (X,Y,X,Y ) + κ (X,Y,X,Y ) + κ (X,Y,X,Y )

= κ1(X) ⋅ κ2(Y κ1(X), Y ) + κ2(Xκ1(Y ),X) ⋅ κ1(Y ) + κ1(X) ⋅ κ1(Y ) ⋅ κ1(X) ⋅ κ1(Y )

= E[X]⋅(E[Y E[X]Y ] −E[Y E[X]] ⋅E[Y ])

+(E[XE[Y ]X] −E[XE[Y ]] ⋅E[X]) ⋅E[Y ] +E[X] ⋅E[Y ] ⋅E[X] ⋅E[Y ]

= E[X] ⋅E[Y E[X]Y ] +E[XE[Y ]X] ⋅E[X] −E[X] ⋅E[Y ] ⋅E[X] ⋅E[Y ].
This recovers the formula from Example 5.3 (3).
Proposition 9.6. Let (A,B,E) be a B-valued probability space with corresponding
cumulants (κn)n∈N. Consider, for n ∈ N, random variables X1, . . . ,Xn ∈ A and
b1, . . . , bn−1 ∈ B. Then we have

E[X1b1X2b2⋯Xn−1bn−1Xn]

=
n

∑
s=1

∑
1=j1<j2<⋅⋅⋅<js≤n

κs(X1E[b1X2⋯Xj2−1bj2−1],Xj2E[bj2Xj2+1⋯Xj3−1bj3−1], . . . ,Xjs)

×E[bjs⋯bn−1Xn].
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9.2 Operator-valued R-transform
Theorem 9.7. Let (A,B,E) be a B-valued C∗-probability space and X = X∗ ∈ A.
Consider the following fully matricial functions on a uniform neighborhood of 0,
given via the coefficients in the power series expansion about 0:

○ the Cauchy transform GX given via HX(z) = GX(z−1) by

∂n+1HX(0, . . . ,0) ♯(b0, . . . , bn) = E[b0Xb1⋯bn−1Xbn]

○ the R-transform RX given by

∂nRX(0, . . . ,0) ♯(b1, . . . , bn) = κn+1(Xb1,Xb2, . . . ,Xbn,X)

Then we have that on suitable domains

zG(z) = 1 +R[G(z)] ⋅G(z), (9.2)

and G and R determine each other via (9.2).

Remark 9.8. (0) Note that R has a constant term, whereasH starts with the linear
term; on the base level we have the power series expansions, for z = b ∈ B

HX(b) = b + bE[X]b + bE[XbX]b + bE[XbXbX]b +⋯

and
RX(b) = κ1(X) + κ2(Xb,X) + κ3(Xb,Xb,X) +⋯

(1) Note that with G = (G(n))n∈N and R = (R(n))n∈N, (9.2) means that there exists
R > 0 such that for each n ∈ N we have

zG(n)(z) = 1 +R(n)[G(n)(z)] ⋅G(n)(z) for z ∈Mn(B) with ∥z∥ > R.

(2) For our applications to polynomials in Theorem 8.8,

GP (z) = lim
ε↘0

[GP̂ (Λε(z))]1,1,

we actually only need the base level n = 1 of GP̂ .
(3) Since mixed cumulants in free variables vanish we have for free X1,X2 that

κn+1((X1 +X2)b1, (X1 +X2)b2, . . . , (X1 +X2)bn, (X1 +X2))

= κn+1(X1b1,X1b2, . . . ,X1bn,X1) + κn+1(X2b1,X2b2, . . . ,X2bn,X2),
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and thus also

RX1+X2(z) = RX1(z) +RX2(z) for ∥z∥ sufficiently small.

This allows in principle to express GX1+X2 in terms of GX1 and GX2 : for i = 1,2
we calculate from GXi its R-transform RXi via (9.2), then we get easily the
R-transform of the sum, RX1+X2 = RX1 +RX2 , and use again (9.2) (now in the
other direction) to get from this GX1+X2 . There is, however, a problem with
this, namely (9.2) can usually not be solved explicitly and there is also no good
numerical algorithm for dealing with (9.2). Hence, as in the scalar-valued case,
we will rewrite the R-transform approach into the “subordination” language.
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10 Operator-Valued Free
Convolution via Subordination
Function and the Distribution
of Polynomials in Free
Variables

The subordination description of operator-valued free convolution yields as in the
scalar-valued case algorithms which can be analytically controlled. Combining this
with the linearization idea solves then the problem of calculating the distribution of
polynomials in free variables, which in turn can be used to calculate the asymptotic
eigenvalue distribution of polynomials in random matrices. We follow here the
presentation from [MSp], by refering the proof of the main statement to the original
paper [BMS].

10.1 Subordination for operator-valued free
convolution

Remark 10.1. (1) We want to describe X1 +X2, for X1 and X2 free, in a subordi-
nated form via

GX1+X2(z) = GX1(ω1(z)), and GX1+X2(z) = GX2(ω2(z))

for some subordination functions ω1, ω2. Let us check, on a formal level, the
properties of those (compare also 5.1 of Free Probability Lecture Notes):

ω1(z) = G<−1>
X1 (GX1+X2(z)).

Note that zG(z) = 1 +R[G(z)] ⋅G(z) means that (for z = G<−1>(b)):

G<−1>(b) ⋅ b = 1 +R(b) ⋅ b, i.e., G<−1>(b) = b−1 +R(b).
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Put now G1 = GX1 , G2 = GX2 , G = GX1+X2 , and the same for R. Then we have

ω1(z) = G<−1>
1 (G(z)) = G(z)−1 +R1(G(z)) and ω2(z) = G(z)−1 +R2(G(z))

and thus

ω1(z) + ω2(z) = 2G(z)−1 +R1(G(z)) +R2(G(z))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=R[G(z)]=z−G(z)−1

= z +G(z)−1

= z +G1(ω1(z))−1

= z + F1(ω1(z)),

and thus
ω2(z) = z + F1(ω1(z)) − ω1(z)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
h1(ω1(z))

,

where we put

F1(z) ∶= G1(z)−1, and h1(z) ∶= F1(z) − z = G1(z)−1 − z.

So we have
ω2(z) = z + h1(ω1(z))

and, by symmetry,
ω1(z) = z + h2(ω2(z)).

Inserting the first equation into the second gives finally

ω1(z) = z + h2(z + h1(ω1(z))).

This is a fixed point equation for ω1(z), which can be used for calculating
ω1(z) via iterations.

(2) The crucial point is that the fixed point equation can be used to define ω1(z)
(and, in the same way, ω2(z)) not just on some suitably chosen domain, but
always on all of H+(B). To show the convergence of the iterates on all of
H+(B) one uses again the Earle–Hamilton Theorem.

(3) To make the formal calculations above rigorous is much harder than in the
scalar-valued case (in particular, as the involved domains are harder to con-
trol), but it can be done. We only give the final result from [BMS]. It would
be nice to find a simpler, more streamlined proof of this theorem.
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Theorem 10.2 (Belinschi, Mai, Speicher 2017). Let (A,B,E) be an operator-valued
C∗-probability space and consider selfadjoint X1,X2 ∈ A which are free with respect
to E. Then there exists a unique pair of Fréchet analytic maps

ω1, ω2 ∶H+(B) →H+(B)

such that
(i) Imωj(z) ≥ Im z for all z ∈H+(B) and j = 1,2;
(ii) for all z ∈H+(B)

F1(ω1(z)) + z = F2(ω2(z)) + z = ω1(z) + ω2(z);

(iii) for all z ∈H+(B)
G1(ω1(z)) = G2(ω2(z)) = G(z).

Moreover, if z ∈H+(B), then ω1(z) is the unique fixed point of the map fz ∶H+(B) →
H+(B), given by

fz(w) ∶= h2(h1(w) + z) + z;

and ω1(z) = limn→∞ fnz (w) for any w ∈ H+(B). The same statements hold for ω2,
where fz is replaced by

w ↦ h1(h2(w) + z) + z.

10.2 Distribution of polynomials in free variables
Remark 10.3. This can then be used, together with the linearization idea, to compute
numerically distributions of polynomials in free variables. This has relevance for the
asymptotic eigenvalue distribution of random matrices. Assume thatX(N)

1 , . . . ,X
(N)
d

are N ×N random matrices which are asymptotically free, i.e.,

(X(N)
1 , . . . ,X

(N)
d ) N→∞Ð→ (X1, . . . ,Xd),

where X1, . . . ,Xd are free. Then, for any polynomial p ∈ C⟨x1, . . . , xd⟩, we also have

p(X(N)
1 , . . . ,X

(N)
d ) N→∞Ð→ p(X1, . . . ,Xd);

and the distribution of the limit can be calculated via linearization and operator-
valued free convolution.
Note the following typical situations for asymptotically free random matrices:
(i) independent gue are asymptotically free;
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(ii) gue are asymptotically free from deterministic (e.g., diagonal) matrices;
(iii) “randomly rotated” matrices are asymptotically free: forD(N)

1 ,D
(N)
2 determin-

istic (e.g., diagonal) matrices and UN Haar unitary N ×N random matrices,
we have that D(N)

1 and UND(N)
2 U∗

N are asymptotically free; so, in particular,
asymptotically the eigenvalue distribution of p(D(N)

1 , UND
(N)
2 U∗

N) is given by
the distribution of p(X1,X2) where X1 and X2 are free and µ

D
(N)
1
→ µX1 and

µ
D
(N)
2
→ µX2 .

Example 10.4. Let us compare, for the polynomial p(x, y) = xy + yx + x2, the distri-
bution of asymptotically free random matrices with the limit distribution, which we
calculate by our linearization and operator-valued convolution machinery.
(1) Consider first, for N = 4000, a gue(N) matrix AN and a deterministic diagonal

matrix XN with 2000 eigenvalues -2, 1000 eigenvalues -1 and 1000 eigenvalues
1. We compare the histogram of the N eigenvalues of p(XN ,AN) with the
distribtion (red curve) of p(X,S), where S and X are free, S is a semicircular
element and X has distribution µX = 1

4(2δ−2 + δ−1 + δ+1).
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(2) Consider now, again for N = 4000, two deterministic diagonal matricesXN and
YN ; YN has 2000 eigenvalues 1 and 2000 eigenvalues 3; and XN is the same as
before, i.e., a diagonal matrix with 2000 eigenvalues -2, 1000 eigenvalues -1 and
1000 eigenvalues 1. In addition we take now a Haar unitary random matrix UN
and compare the histogram of the N eigenvalues of p(XN , UNYNU∗

N) with the
distribution (red curve) of p(X,Y ), where X and Y are free, with distribution
µX = 1

4(2δ−2 + δ−1 + δ+1) and µY = 1
2(δ1 + δ3).
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11 Distribution of Rational
Expressions in Free Random
Variables

The linearization idea is usually (i.e., in other contextes than free probability) used
for dealing with rational functions, not just polynomials. Thus it looks feasible to
try to extend our results to rational functions. We will follow quite closely [HMS],
where one can also find more information on the history of the linearization idea
and more details on non-commutative rational functions.

11.1 Linearization for non-commutative rational
functions

Remark 11.1. Recall the idea of the linearization of a polynomial. For a polynomial
P = p(X1, . . . ,Xd) ∈ A we need to find U,Q,V with

○ U,Q,V are affine matrices in X1, . . . ,Xd;
○ Q is invertible;
○ P = −UQ−1V .

Then the linearization P̂ = ( 0 U
V Q

) knows a lot about P , namely

GP (z) = [GP̂ (Λ(z))]1,1. (11.1)
Question: Can we linearize more general “functions”?
Example 11.2. Note that in P = −UQ−1V the inverse shows up, which suggests that
we might also linearize inverses. Try the simplest case, P =X−1. We can write this
as

P = −(1) ⋅ (−X)−1 ⋅ (1),
i.e., U = 1, Q = −X, V = 1, all 1 × 1 matrices, and thus

P̂ = (0 1
1 −X) ∈M2(A).
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(Note that P̂ is here also selfadjoint!) If we assume that Q = −X is invertible,
then this satisfies all properties of our linearization and (11.1) allows to calculate
the distribution of X−1 via the linear matrix P̂ . (Of course, in this case of one
variable we would calculate the distribution of X−1 form the distribution of X just
via ordinary function calculus.)
Note that in this case invertibility of Q is not just an algebraic issue, which is

true for all p(X), but depends on the existence of p(X) = X−1 for the concretely
considered X. We have to be careful that the existence of P implies the existence
of all inverses which show up in our calculations. The basic ingredient for all this is
the following well-known formula.

Theorem 11.3 (Schur complement formula). Let A be a complex unital algebra.
Let matrices

a ∈Mk(A), b ∈Mk,l(A), c ∈Ml,k(A), d ∈Ml(A)

be given and assume that d is invertible inMl(A). Then the following are equivalent.

(i) (a b
c d

) ∈Mk+l(A) is invertible.

(ii) The Schur complement a − bd−1c is invertible in Mk(A).
If those are satisfied, then we have

(a b
c d

)
−1

= ((a − bd
−1c)−1 ∗
∗ ∗) .

Proof. We have

(a b
c d

) = (1 bd−1

0 1 )(a − bd
−1c 0

0 d
)( 1 0
d−1c 1) . (11.2)

Since the first and the third factor are always invertible, the invertibility of the left
hand side is equivalent to the invertibility of

(a − bd
−1c 0

0 d
) ,

which in turn is equivalent to the invertibility of a − bd−1c (since d is invertible by
assumption).
The formula for the inverse follows by taking the inverse of (11.2).

Definition 11.4. Let r be a rational expression in the formal variables x1, . . . , xd.
A linear representation ρ = (u, q, v) of r consists of

92



○ an affine matrix q in the variables x1, . . . , xd, of size n × n for some n ∈ N,
○ an 1 × n matrix u over C,
○ and an n × 1 matrix v over C

such that we have for any unital algebra A and any X1, . . . ,Xd ∈ A: whenever
r(X1, . . . ,Xd) makes sense in A (i.e., all inverses appearing in r must exist in A),
then q(X1, . . . ,Xd) is also invertible in Mn(A) and we have then

r(X1, . . . ,Xd) = −uq(X1, . . . ,Xd)−1v.

11.2 Distribution of non-commutative rational
functions

Theorem 11.5. Let r be a selfadjoint rational expression and ρ = (u, q, v) a selfad-
joint linear representation of r (i.e., u = v∗, q = q∗). Consider a C∗-probability space
(A, ϕ) and selfadjoint random variables X1, . . . ,Xd ∈ A such that r(X1, . . . ,Xd) is
defined in A (necessarily as bounded operator). Then, with

R̂ ∶= (0 u
v q(X1, . . . ,Xd)

) ∈Mn+1(A),

we have for all z ∈H+(C)

Gr(X1,...,Xd)(z) = lim
ε↘0

[GR̂(Λε(z))]1,1.

Proof. Compare also Example 8.2. We have

Λ(z) − R̂ = ( z −u
−v −q(X1, . . . ,Xd)

) ;

by definition of linear representation, q(X1, . . . ,Xd) is invertible; so, by the Schur
complement formula 11.3, Λ(z) − R̂ is invertible if and only if

z − u(−q(X1, . . . ,Xd))−1v = z − r(X1, . . . ,Xd)

is invertible, and then

[(Λ(z) − R̂)−1]1,1 = (z − r(X1, . . . ,Xd))−1.

Applying ϕ to this, and taking into account the continuity in ε as in Example 8.2,
gives the statement on Cauchy transforms.
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11.6. Algorithm for linear representations. For every rational expression
one can build a linear representation according to the following algorithm.
(1) Scalars λ ∈ C and variables xj have respective linear representations

((0 1) ,( λ −1
−1 0 ) ,(0

1)) and ((0 1) ,(xj −1
−1 0 ) ,(0

1)) .

(2) If (u1, q1, v1) is a representation of r1 and (u2, q2, v2) is a representation of r2,
then representations for r1 + r2 and for r1 ⋅ r2 are respectively given by

((u1 u2) ,(
q1 0
0 q2

) ,(v1
v2

)) and ((0 u1) ,(
v1u2 q1
q2 0 ) ,( 0

v2
)) .

(3) If (u, q, v) is a representation of r /= 0, then

((1 0) ,(0 u
v −q) ,(

1
0))

is a representation of r−1.

Proof. Let us just check (3). We have to see: if r−1(X1, . . . ,Xd) makes sense (i.e.,
r(X1, . . . ,Xd) /= 0 and invertible in A), then

(0 u
v −q(X1, . . . ,Xd)

)

is invertible. Since r(X1, . . . ,Xd) makes sense, q(X1, . . . ,Xd) is invertible (by the
definition of a linear representation) and, by the Schur complement formula 11.3,
the matrix above is invertible if and only if −uq(X1, . . . ,Xd)v = r(X1, . . . ,Xd) is
invertible; but this is the case by our assumption; and then we have, still by 11.3,

(1 0)(0 u
v −q(X1, . . . ,Xd)

)
−1

(1
0) =

⎡⎢⎢⎢⎢⎣
(0 u
v −q(X1, . . . ,Xd)

)
−1⎤⎥⎥⎥⎥⎦1,1

= r(X1, . . . ,Xd)−1.

Example 11.7. Let us apply the above algorithm to r(x, y) = [x−1 + y−1]−1. First, for
x−1 and y−1 we have the linearizations

⎛
⎜
⎝
(1 0 0) ,

⎛
⎜
⎝

0 0 1
0 −x 1
1 1 0

⎞
⎟
⎠
,
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

⎞
⎟
⎠

and
⎛
⎜
⎝
(1 0 0) ,

⎛
⎜
⎝

0 0 1
0 −y 1
1 1 0

⎞
⎟
⎠
,
⎛
⎜
⎝

1
0
0

⎞
⎟
⎠

⎞
⎟
⎠
,
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which gives for x−1 + y−1 the linearization

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 0 0 1 0 0) ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 0
0 −x 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −y 1
0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Finally, the inverse [x−1 + y−1]−1 has then the linearization

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 0 0 0 0 0 0) ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 1 0 0
1 0 0 −1 0 0 0
0 0 x −1 0 0 0
0 −1 −1 0 0 0 0
1 0 0 0 0 0 −1
0 0 0 0 0 y −1
0 0 0 0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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12 Unbounded Rational
Expressions

Evaluating rational expressions in operators will typically lead to unbounded op-
erators. Here we will see that we can also say quite a bit about such a situation.
Actually, understanding what is going on there is crucial for getting a grasp on one
of the most basic regularity questions about non-commutative distributions: the
absence of atoms in the distribution of polynomials or rational functions of our op-
erators. The material here relies on the original work [MSY], where one can also find
more details about the algebraic description of non-commutative rational functions
as the “free skew field”, and the “fullness” of matrices in this context.

12.1 Going unbounded
Remark 12.1. Note that we have to restrict toX1, . . . ,Xd ∈ A for which r(X1, . . . ,Xd)
is defined in A, for a rational expression r. Up to now we considered this in a C∗-
algebra A, which means that r(X1, . . . ,Xd) has to exist in A, i.e., as a bounded
operator. Can we weaken this?

Example 12.2. Let X ∶ Ω→ R be a classical real-valued random variable, defined on
a probability space (Ω,A, P ). When does Y ∶= X−1 = 1/X make sense as a random
variable. Since our functions are defined only almost everywhere, we need

µX({0}) = P (X = 0) = 0. (12.1)

If we consider X as multiplication operator on L2(Ω, P ), then (12.1) says that the
kernel

ker(X) ∶= {f ∈ L2(Ω) ∣Xf = 0}

is trivial, i.e., ker(X) = {0}. Under this condition, X−1 exists, but it might be an
unbounded operator, namely if 0 is in the spectrum σ(X) of X.
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(1) For example, let X = S be a semicircular variable with distribution

µS =
−2 2

1
π

We can realize X as multiplication operator on the interval [−2,2]; i.e.,

(Xf)(t) = tf(t) for f ∈ L2([−2,2], µS).

Then 0 ∈ σ(S) and S−1 does not exist as bounded operator, but makes sense
as unbounded operator: (X−1f)(t) = t−1f(t) for f such that t ↦ t−1f(t) is in
L2([−2,2], µS). Note that we only need injectivity of X – i.e., ker(X) = {0}
– to ensure “surjectivity” – i.e., that the image of X is dense, so that we can
invert it there. This is like for matrices, but of course is not true for general
infinite-dimensional operators.

(2) Without injectivity we have no chance of making sense of X−1, even as un-
bounded operator. E.g., if µX = 1

2(δ0 + δ1), there is no X−1.

12.2 Affiliated unbounded operators
Definition 12.3. Let M ⊂ B(H) be a von Neumann algebra. A densely defined
and closed unbounded operator X on H is affiliated with M , if for every unitary
U ∈ M ′ (M ′ is the commutant) we have UX = XU . [Equivalently, in the polar
decomposition X = U ∣X ∣ we have U ∈ M and ∣X ∣ is affiliated with M , i.e., all
spectral projections of ∣X ∣ are in M .] We write M̃ for the set of operators affiliated
to M .

Example 12.4. (1) IfM = B(H), then M̃ consists of all unbounded densely defined
and closed operators on H; for dimH = ∞ this is a nasty object without much
structure.

(2) If M = L∞(µ), then M̃ is the ∗-algebra of all µ-measurable functions.
(3) If M is a finite von Neumann algebra (i.e., it has a faithful normal trace τ),

then the situation is as nice as in the classical commutative case or in the case
of matrices; namely, then M̃ is a ∗-algebra and for X ∈ M̃ the inverse X−1 ∈ M̃
exists if and only if X is injective, i.e., ker(X) = {0}. [Those are results of
Murray and von Neumann.]
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Remark 12.5. (1) Note that the case of a finite von Neumann algebra is relevant
for us; our C∗-probability spaces (A, ϕ) are usually W ∗-probability spaces
(M,τ) where M is a von Neumann algebra and τ is a trace. In particular,
free semicirculars S1, . . . , Sd are living in a finite von Neumann algebra. More
general, limits of random matrices do so, since our ϕ as the limit of traces on
matrices is necessarily also a trace.

(2) If we are in a finite von Neumann algebra setting (M,τ), then we can replace
A in Theorem 11.5 by M̃ and thus also treat r(X1, . . . ,Xd) which are de-
fined as unbounded affiliated operators. Via our linearization r =̂ (u, q, v) this
requirement on the existence of r(X1, . . . ,Xd) as unbounded operator is the
same as the existence of the inverse of q(X1, . . . ,Xd) as unbounded operator;
and then we still have r(X1, . . . ,Xd) = −uq(X1, . . . ,Xd)−1v.

(3) This raises the question whether there are operators X1, . . . ,Xd for which
(i) all rational expressions r(X1, . . . ,Xd) are defined as unbounded operators

or
(ii) all inverses of q(X1, . . . ,Xd) exist as unbounded operators.
Note that we have to specify more precisely which r and q we mean.
(i) We have to make sure that we never invert 0; thus 0−1 is not allowed as

r; but there can also be more subtle versions of this, like

(yxx−1 − y)−1 or {x − [x−1 + (y−1 − x)−1]−1 − xyx}−1
.

(ii) The q arising in our linearization algorithm are full in the following sense:
q has no proper rectangular factorization in matrices over C⟨x1, . . . , xd⟩,
i.e. if we can factorize q ∈ Mn(C⟨x1, . . . , xd⟩) as q = q1q2 with q1 ∈
Mn,r(C⟨x1, . . . , xd⟩) and q2 ∈ Mr,n(C⟨x1, . . . , xd⟩), then we necessarily
have r ≥ n.
Note: if q is not full, then q(X1, . . . ,Xd) = q1(X1, . . . ,Xd)⋅q2(X1, . . . ,Xd);
since q2(X1, . . . ,Xd) as an r ×n matrix with r < n has no dense image, it
must also have a kernel, but then q(X1, . . . ,Xd) has also a kernel. So we
need clearly fullness as a requirement for the considered q.

12.3 Realization of non-commutative rational
functions as unbounded operators

Theorem 12.6 (Mai, Speicher, Yin 2019). Let (M,τ) be a tracial W ∗-probability
space and consider X1, . . . ,Xd ∈M . Then the following are equivalent.

99



(i) For all meaningful rational expressions r /= 0, the operator r(X1, . . . ,Xd) exists
as unbounded operator in M̃ and is invertible in M̃ .

(ii) For all full affine q ∈Mn(C⟨x1, . . . , xd⟩) the operator q(X1, . . . ,Xd) ∈Mn(M)
is invertible in Mn(M̃).

(iii) ∆(X1, . . . ,Xd) = d, which means the following: if we have finite rank operators
T1, . . . , Td on L2(M,τ) such that ∑d

k=1[Tk,Xk] = 0, then necessarily T1 = ⋅ ⋅ ⋅ =
Td = 0.

Remark 12.7. (1) The equivalence between (i) and (ii) is more or less the lineariza-
tion idea; the relation between (ii) and (iii) relies on the following. Consider
linear and selfadjoint

R̂ = b(0) ⊗ 1 + b(1) ⊗X1 +⋯ + b(d) ⊗Xd

with b(0), b(1), . . . , b(d) ∈ Mn(C) selfadjoint, and assume we have an element
f = (f1, . . . , fn), with fi ∈ L2(M) for i = 1, . . . , n, in the kernel of R̂, i.e.,
R̂f = 0; then put

Tk ∶=
n

∑
i,j=1

b
(k)
ij ⟨⋅, fi⟩fj (k = 0,1, . . . , d).

Those T0, T1, . . . , Td are finite rank operators and R̂f = 0 is then

T0 +
k

∑
k=1
XkTk = 0.

Since the Ti are selfadjoint, we get by taking the adjoint

T0 +
d

∑
k=1
TkXk = 0.

By taking the difference between those two equations we have then
d

∑
k=1

(TkXk −XkTk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[Tk,Xk]

= 0.

The theorem holds also for non-selfadjoint Xi, the arguments are getting then
more involved.

(2) It is not obvious how to check whether ∆(X1, . . . ,Xd) = d is satisfied or not.
However, there are a couple of free probability tools to decide on this, like
“maximality of free entropy dimension” or “existence of a dual system”. So we
know, for example, that ∆(S1, . . . , Sd) = d for free semicirculars S1, . . . , Sd.
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The above gives us directly some strong implications about the absence of atoms
in the distribution of polynomials, or even rational functions, of operators which
satisfy ∆(X1, . . . ,Xd) = d. Let us formulate this just for the most prominent case of
free semicirculars.

Corollary 12.8. Let (M,τ) be a finite W ∗-probability space and S1, . . . , Sd ∈M free
semicirculars.
(1) For any meaningful rational expression r the operator r(S1, . . . , Sd) ∈ M̃ exists

as unbounded operator. If r = r∗ and not constant, then µr(S1,...,Sd) has no
atoms.

(2) For any full q ∈ Mn(C⟨x1, . . . , xd⟩) the operator q(S1, . . . , Sd) is invertible in
Mn(M̃). If q = q∗, then µq(S1,...,Sd), with respect to (Mn(M), trn⊗τ), has no
atom at 0.
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13 Exercises

13.1 Assignment 1
In Examples 1.7 and 1.8 we saw two realizations of the most important non-com-
mutative distribution, namely n free semicircular elements. In this assignment you
are asked to familiarize yourself with the meaning of this. For the notion of freeness
you might watch Lecture 1 and 2 from the class “ Free Probability Theory” from last
term or read the corresponding Chapter 1 of the class notes. For random matrices
you might watch Lecture 17 and 18 or read Chapter 6.

Exercise 1. Let S1, . . . , Sn be the operators on the full Fock space from Example
1.7.
(i) Saying that each S ∈ {Si ∣ 1 ≤ i ≤ n} is a semicircular variable means that

its odd moments are zero and the even moments are given by the Catalan
numbers, i.e.

ϕ(S2k+1) = 0 and ϕ(S2k) = 1
k + 1(2k

k
).

Check the latter for small k, i.e. show that

ϕ(S2) = 1, ϕ(S4) = 2, ϕ(S6) = 5, ϕ(S8) = 14.

(ii) Saying that the S1, . . . , Sn are free means that special mixed moments vanish.
Show this for the following special cases.

ϕ(S1S2S1S2) = 0, ϕ((S4
1 − 2)(S6

2 − 5)(S2
1 − 1)) = 0.

Exercise 2. Let X(N)
i be the independent Gaussian random matrices from Example

1.8. Familiarize yourself with computer programs (e.g., matlab) to produce random
matrices and calculate and plot histograms of their eigenvalues.
(i) Saying that, for each i, X(N)

i is asymptotically a semicircular variable means
that for large N the eigenvalue distribution of the N eigenvalues of such a ma-
trix is close to the semicircle distribution. Check this by producing a histogram
for a 1000 × 1000 Gaussian random matrix.
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(ii) Saying that X(N)
1 , . . . ,X

(N)
n are asymptotically free means that special mixed

moments (with respect to the normalized trace tr) are, for large N , close to
zero. Check this numerically for the following special cases:

tr(ABAB), tr((A4 − 2)(B6 − 5)(A2 − 1)),
where A and B are two independent 1000 × 1000 Gaussian random matrices.

13.2 Assignment 2
Exercise 3. Let (C, ϕ) be a non-commutative probability space. Put

A ∶=Mn(C), B ∶=Mn(C), E ∶= id⊗ϕ ∶ A → B.
(i) Show that (A,B,E) is an operator-valued probability space.
(ii) Assume that (C, ϕ) is a C∗-probability space. Show that (A,B,E) is then an

operator-valued C∗-probability space.
(iii) Show that in the C∗-case we also have: if ϕ is faithful, then E is also faithful.

[Faithful means: E(A∗A) = 0 implies that A = 0.]
(iv) Assume that ϕ is a trace, i.e., ϕ(AB) = ϕ(BA) for all A,B ∈ C. Does then

also E have the tracial property? Give a proof or counter example!
Exercise 4. Let B be a unital algebra. Consider a collection of functions F =
(Fm)m∈N

Fm ∶Mm(B) →Mm(B), z ↦ Fm(z).
(i) We say that F respects direct sums if

Fm1+m2 (
z1 0
0 z2

) = (Fm1(z1) 0
0 Fm2(z2)

)

for all m1,m2 ∈ N, z1 ∈Mm1(B), z2 ∈Mm2(B).
(ii) We say that F respects similarities if

Fm(SzS−1) = SFm(z)S−1

for all m ∈ N, z ∈Mm(B) and all invertible S ∈Mm(C).
(iii) We say that F respects intertwininigs if for all n,m ∈ N, z1 ∈ Mn(B), z2 ∈

Mm(B), T ∈Mn,m(C) (the latter are the n×m matrices with complex entries)
we have the following:

z1T = Tz2 Ô⇒ Fn(z1)T = TFm(z2).
Prove that [(i) and (ii)] is equivalent to (iii).
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13.3 Assignment 3
Exercise 5. Prove the second item from the proof of Lemma 3.6: Let f be a non-
commutative function, then we have for z1 ∈Mn(B), z2 ∈Mm(B) that

∂f(z1, z2) ♯(w1 +w2) = ∂f(z1, z2) ♯w1 + ∂f(z1, z2) ♯w2

for all w1,w2 ∈Mn,m(B).

Exercise 6. Let r ∈ N and b0, b1, . . . , br+1 ∈ B be given and consider the monomial f

f(z) = b0zb1zb2z⋯brzbr+1.

(i) Show that f = (fm)m∈N is a non-commutative function. (For this, also give
first the precise definition of all fm ∶Mm(B) →Mm(B).)

(ii) Calculate the first and second order derivatives of f , i.e.,

∂f(z1, z2) ♯w, and ∂2f(z1, z2, z3) ♯(w1,w2).

Exercise 7. For a non-commutative function f we define the mappings

∂k−1(z1, . . . , zk) ♯(w1, . . . ,wk−1)

by

f

⎛
⎜⎜⎜⎜⎜⎜
⎝

z1 w1 0 . . . 0
0 z2 w2 . . . 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 ⋯ zk−1 wk−1
0 0 ⋯ 0 zk

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

f(z1) ∂f(z1, z2) ♯w1 ∂2(z1, z2, z3) ♯(w1,w2) ⋯ ∂k−1f(z1, . . . , zk) ♯(w1, . . . ,wk−1)
0 f(z2) ∂f(z2, z3) ♯w2 ⋯ ∂k−2f(z2, . . . , zk) ♯(w2, . . . ,wk−1)
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋮ ∂f(zk−1, zk) ♯wk−1
0 0 0 ⋯ f(zk)

⎞
⎟⎟⎟⎟⎟⎟
⎠

Show that for each N ∈ N we have the expansion

f(z + tw) =
N

∑
k=0
tk∂k(z, . . . , z, z) ♯(w, . . . ,w) + tN+1∂N+1f(z, . . . , z, z + tw) ♯(w, . . . ,w)
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for m ∈ N, z,w ∈Mm(B) and t ∈ C.
You can assume for this that ∂k−1(z1, . . . , zk) ♯(w1, . . . ,wk−1) is linear in the argu-
ments wi.
Hint: It might be helpful, to consider the matrix

y ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

z tw 0 ⋯ 0 0
0 z tw ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ z tw
0 0 0 ⋯ 0 z + tw

⎞
⎟⎟⎟⎟⎟⎟
⎠

and observe that

y ⋅
⎛
⎜
⎝

1
⋮
1

⎞
⎟
⎠
=
⎛
⎜
⎝

1
⋮
1

⎞
⎟
⎠
⋅ (z + tw)

Exercise 8. Consider the C∗-algebra Mn(C) of n × n matrices over C. We define
its upper half-plane by

H+(Mn(C)) ∶= {b ∈Mn(C) ∣ ∃ε > 0 ∶ Im(b) ≥ ε1},

where Im(b) ∶= (b − b∗)/(2i).
(i) In the case n = 2, show that in fact

H+(M2(C)) ∶= {(b11 b12
b21 b22

)∣ Im(b11) > 0, Im(b11) Im(b22) >
1
4 ∣b12 − b21∣2} .

(ii) For general n ∈ N, prove: if a matrix b ∈ Mn(C) belongs to H+(Mn(C)) then
all eigenvalues of b lie in the complex upper half-plane H+(C). Is the converse
also true?

13.4 Assignment 4
Let A and B be unital C∗-algebras. A linear map Φ ∶ A → B is called completely
positive if all matrix amplifications Φ⊗ id ∶Mn(A) →Mn(B) are positive.

Exercise 9. Show that the following are equivalent:
(i) Φ ∶ A → B is completely positive.
(ii) For each n ∈ N and all a1, . . . , an ∈ A the matrix (Φ(aia∗j ))ni,j=1 ∈ Mn(B) is

positive.
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Exercise 10. Show that the transpose map on 2 × 2 matrices,

Φ ∶M2(C) →M2(C), (a11 a12
a21 a22

) ↦ (a11 a21
a12 a22

) ,

is positive, but not completely positive.

Exercise 11. Show that a positive conditional expectation E ∶ A → B is completely
positive. What does this tell us about the complete positivity of states ϕ ∶ A → C?
Hint: For this you can use the following characterization: A matrix (bij)ni,j=1 ∈

Mn(B) is positive if and only if we have
n

∑
i,j=1

bibijb
∗
j ≥ 0 for all b1, . . . , bn ∈ B.

Exercise 12. (i) Let (A,B,E) be a B-valued C∗-probability space. Consider a
“constant” selfadjoint random variable b = b∗ ∈ B ⊂ A. Calculate the fully
matricial Cauchy transform of b.

(ii) Consider a C∗-probability space (A, ϕ) as a special case of an operator-valued
C∗-probability space, where B = C. Consider a selfadjoint X = X∗ ∈ A. Its
distribution µX is then a probability measure on R. Express the fully matricial
C-valued Cauchy transform GX in terms of µX .

(iii) Assume that X1 and X2 are classical (thus commuting) bounded selfadjoint
random variables. Hence they have a classical distribution, which is a proba-
bility measure on R2 with compact support. Consider now the 2 × 2 matrix

X = (X1 0
0 X2

) .

TheM2(C)-valued Cauchy transform ofX, as a fully matricial function, should
now be determined in terms of this classical data. Make this concrete!

13.5 Assignment 5
Exercise 13. Show the following easy direction of Theorem 4.9: Let (A,B,E) be
an operator-valued C∗-probability space and X =X∗ ∈ A. Show that µX ∈ Σ0

B.

Exercise 14. Let Φ ∶ A → B be a completely positive map between two unital C∗-
algebras with Φ(1) = 1. Show that Φ satisfies the following kind of Cauchy-Schwarz
inequality: for a ∈ A we have Φ(a)∗Φ(a) ≤ Φ(a∗a).
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Hint: Consider the positive matrix

(a
∗a a∗

a 1 )

Exercise 15. LetX and Y be free in an operator-valued probability space (A,B,E).
Calculate the mixed moment E[Xb1Y b2Xb3Y ], for b1, b2, b3 ∈ B, in terms of moments
of X and of Y .

13.6 Assignment 6
Exercise 16. Let η ∶ B → B be a completely positive map on the unital C∗-algebra
B. We want to construct an operator X which has η as its second moment; this will
be a kind of operator-valued Bernoulli element. For this we consider the degenerate
Fock space

F ∶= B ⊕ BxB ⊂ B⟨x⟩,
equipped with the B-valued inner product

⟨⋅, ⋅⟩ ∶ F × F → B,

given by linear extension of

⟨b0 + b1xb2, b̃0 + b̃1xb̃2⟩ ∶= b∗0 b̃0 + b∗2η(b∗1 b̃1)b̃2.

On F we define the creation operator l∗ by

l∗b = xb l∗b1xb2 = 0,

and the annihilation operator l by

lb = 0, lb1xb2 = η(b1)b2.

Let A be the ∗-algebra which is generated by l and by elements b ∈ B acting as
multiplication operators on F . We also put

E ∶ A → B, A↦ E[A] ∶= ⟨1,A1⟩.

(i) Show that the inner product is positive and that l and l∗ are adjoints of each
other.

(ii) Show that E is positive.
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(iii) Show that the second moment of the selfadjoint operator X = l+ l∗ is given by
η.

(iv) What is the formula for a general moment of X?

Exercise 17. Let S ∈ A be a B-valued semicircular element with covariance η ∶ B →
B. Fix n ∈ N and b ∈Mn(B). Consider now

Ŝ ∶= b(1⊗ S)b∗ = b
⎛
⎜
⎝

S . . . 0
⋮ ⋱ ⋮
0 . . . S

⎞
⎟
⎠
b∗ ∈Mn(A).

Show that Ŝ is an Mn(B)-valued semicircular element and calculate its covariance

η̂ ∶Mn(B) →Mn(B).

Compare also Remark 6.3.

Exercise 18. Assume that we have X(1)
i (i ∈ N) which are f.i.d., with first moment

zero and second moment given by a covariance η1 ∶ B → B; and that we have X(2)
i (i ∈

N) which are f.i.d with first moment zero and second moment given by a covariance
η2 ∶ B → B. According to the operator-valued version of the free central limit theorem
we know then that the normalized sum of the X(1)

i converges to an operator-valued
semicircular element S1 with covariance η1 and that the normalized sum of the X(2)

i

converges to an operator-valued semicircular element S2 with covariance η2.
Assume now that the X(1)

i and X(2)
i are realized in the same C∗-probability space

and are also free for each i. Then the joint distribution of (X(1)
i ,X

(2)
i ) converges

to the joint distribution of the pair (S1, S2). Convince yourself that our argument
(from the Free Probability Lecture Notes, Assignment 3, Exercise 4) for the scalar-
valued case that freeness goes over to the limit remains valid in the operator-valued
case. Thus we get in the limit two semicircular elements which are free.
By repeating the calculation in our proof of the central limit theorem, Theorem

6.2, for this multivariate setting derive the formula for mixed moments of two free
semicircular elements S1 and S2, with covariance mappings η1 and η2, respectively.

13.7 Assignment 7
Exercise 19. Let η ∶ B → B be a completely positive map on the C∗-algebra B. We
want to construct a semicircular operator X which has νη as its distribution. This
operator will be constructed on an operator-valued version of the full Fock space.
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The latter is nothing but our polynomials B⟨x⟩, equipped with the B-valued inner
product

⟨b0xb1x⋯bnxbn+1, b̃0xb̃1x⋯b̃mxb̃m+1⟩ ∶= δnmb∗n+1η (b∗n⋯η(b∗1η(b∗0 b̃0)b̃1)⋯b̃n) b̃n+1.

On this full fock space F we define again a creation operator l∗, now given by

l∗b0xb1⋯xbn+1 ∶= xb0xb1⋯xbn+1,

and an annihilation operator l∗, given by lb = 0 and

lb0xb1x⋯xbn+1 ∶= (η(b0)b1)x⋯xbn+1.

Elements from B act on F by left multiplication. For A we take now the ∗-algebra
which is generated by l and by all multiplication operators from B. Furthermore,
we put

E ∶ A → B, A↦ E[A] ∶= ⟨1,A1⟩.
(i) Show that the inner product on F is positive and that l and l∗ are adjoints of

each other.
(ii) Show that E is positive.
(iii) Calculate explicitly the second and the fourth moments of X ∶= l + l∗.
(iv) Prove that X = l + l∗ has semicircular distribution νη.

Exercise 20. Let S1 and S2 be two free (scalar-valued) standard semicircular ele-
ments and consider

S ∶= ( 0 S1
S1 S2

) .

We have seen in item (3) of Remark 6.3 that S is then anM2(C)-valued semicircular
element whose covariance function η ∶M2(C) →M2(C) is given by

η (b11 b12
b21 b22

) = (b22 b21
b12 b11 + b22

) .

Refresh your memory on the relation between free semicircular elements and inde-
pendent gue random matrices (for example, from Chapter 6 of the Free Probability
Lecture Notes). From this it follows that S is the limit of a random matrix

XN = ( 0 AN
AN BN

) ,
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where AN and BN are independent gue random matrices. (If AN and BN are N ×N
matrices, then XN is of course a 2N × 2N matrix.) Since

g(z) = trE[(z − S)−1] = trG(z)

is the scalar-valued Cauchy transform of S with respect to tr ○E (tr is here the
normalized trace over 2 × 2 matrices), we can calculate the Cauchy transform g(z)
of the limiting eigenvalue distribution of XN by first calculating the M2(C)-valued
Cauchy transform G(z) of S and then taking the trace of this. For invoking the
Cauchy-Stieltjes inversion formula, we should calculate this for z close to the real
axis.
(i) We know that the operator-valued Cauchy transform (on the ground level)

G(b) satisfies the matrix equation

bG(b) = 1 + η(G(b))G(b).

This is true for all b ∈ M2(C), but we are here only interested in arguments
of the form b = z1, where z ∈ H+(C). Try to solve this equation (exactly or
numerically) for z ∈H+(C) close to the real axis, so that you can produce from
this a density for the scalar-valued distribution of S.

(ii) Realize for large N the random matrix XN and calculate histograms for its
eigenvalue distribution. Compare this with the result from (i).

13.8 Assignment 8
Exercise 21. Prove Proposition 7.2: Let (A, ϕ) be a C∗-probability space and
S1, . . . , Sd ∈ A free standard semicirculars (i.e., ϕ(S2

i ) = 1). For n ≥ 1 and selfadjoint
matrices b1, . . . , bd ∈Mn(C) we consider

S ∶= b1 ⊗ S1 +⋯ + bd ⊗ Sd ∈Mn(A).

Then S is in the matrix-valued C∗-probability space (Mn(A),Mn(C), id⊗ϕ) a matrix-
valued semicircular element with covariance η ∶Mn(C) →Mn(C) given by

η(b) =
d

∑
j=1
bjbbj.

Exercise 22. Let Sij for i ≥ j be free standard semicircular elements, and put
Sij = Sji. Furthermore, let αij ∈ R with αij = αji be given. Then we consider

S ∶= (αijSij)ni,j=1.
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From the previous exercise we know that this is an Mn(C)-valued semicircular el-
ement. Give, by relying on Theorem 7.5, a criterium to decide whether S is also
a scalar-valued semicircular element. Use this to decide whether the following are
scalar-valued semicircular elements (for S1, . . . , S6 free standard semicirculars):

S =
⎛
⎜
⎝

3S1 0 4S2
0 5S3 0

4S2 0 3S4

⎞
⎟
⎠

or S̃ =
⎛
⎜
⎝

3S1 6S5 4S2
6S5 5S3 6S6
4S2 6S6 3S4

⎞
⎟
⎠
.

Exercise 23. Check your conclusion from the last exercise numerically by producing
histograms, for N = 1000 or higher, of the eigenvalues of the matrices

X(3N) =
⎛
⎜⎜
⎝

3X(N)
1 0 4X(N)

2
0 5X(N)

3 0
4X(N)

2 0 3X(N)
4

⎞
⎟⎟
⎠

or X̃(3N) =
⎛
⎜⎜
⎝

3X(N)
1 6X(N)

5 4X(N)
2

6X(N)
5 5X(N)

3 6X(N)
6

4X(N)
2 6X(N)

6 3X(N)
4

⎞
⎟⎟
⎠
,

where X(N)
1 , . . . ,X

(N)
6 are independent gue(N) random matrices.

13.9 Assignment 9
Exercise 24. Prove the recursion between moments and free cumulants from Propo-
sition 9.6, by checking that the arguments from the scalar-valued case work also in
the operator-valued situation.

Exercise 25. Write down explicitly the linearization for a monomial of degree k = 5,
as given in the proof of Theorem 8.5 and check that this satisfies indeed all the
requirements for a linearization.

Exercise 26. Find a linearization p̂ of the polynomial

p(x, y) = xy2 + y2x − y.

Bonus Questions:

Exercise 27. Calculate, via linearization and numerical calculation of the corre-
sponding operator-valued semicircular or of the corresponding operator-valued free
convolution, the distribution of p(X,Y ) =XY 2 + Y 2X − Y , where

○ X and Y are free standard semicircular elements
○ X and Y are free random variables, with

µX = 1
2(δ0 + δ1), µY = 1

2(δ−1 + δ1).
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Exercise 28. Realize X and Y , as given in Exercise 27, (asymptotically) via large
N × N random matrices XN and YN , and produce histograms of the eigenvalue
distribution of p(XN , YN). Compare the results with the calculations from Exercise
27.
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Some Off-the-Record Remarks

The preceding presentation has hopefully convinced the reader that we have devel-
oped powerful analytic tools to deal with non-commutative distributions and that we
have reached a deep understanding of many facets of this non-commutative world.

Let us reconsider what we have achieved so far. We have different ways to describe
non-commutative distributions, namely by

○ presenting concrete operators on Hilbert spaces
○ by describing the joint moments or the joint cumulants of the operators
○ by giving the Cauchy transform of the distributions
○ or by describing the classical distribution of all polynomials (or maybe even
all rational functions) in the operators

We consider a situation nice and well-understood when we have something to say
about all of those ways and usually progress comes from being able to switch between
the different points of view. In particular, we should be able to get our hands on
the Cauchy transform and distributions of polynomials.

In the case of free variables, so in particular for free semicirculars, we are in such
a nice situation.

Also if we move away from free variables many of our tools still apply and lead
to quite non-trivial statements. In particular, the statements about the abscence
of atoms in polynomials for operators which have maximal ∆ are of this type and
in the continuation of such investigations we have many more qualitative results on
regularity properties of polynomials in such variables; like, for example, in the recent
work [BM] on Hölder continuity of the distribution function of such polynomials.

In this chapter we want to point out that there are of course also situations where
the situation is not so satisfactory, and that we still hope for many more exciting
discoveries in the non-commutative territory.
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Is there anything special about distributions of
generators of non-embeddable von Neumann
algebras
By the refutation [JNVWY] of Connes embedding problem we know now that there
are tracial von Neumann algebras which cannot be embedded into the ultrapower
of the hyperfinite factor - or to put it more in our language: there are operators in
a tracial W ∗-probability space, whose joint moments cannot be approximated well
by moments of matrices. Up to now nobody was able to construct explicit examples
of such objects. Can our theory of non-commutative distributions say anything
about the distribution of such operators? Can we address them by any of the above
mentioned ways to deal with non-commutative distributions? Let us have a look.

○ We do not know any concrete operators - that’s of course what we would like
to find!

○ Neither do we know any candidates for joint moments or joint cumulants. Since
positivity is always an issue here, it is not only the problem of coming up with
moments which are unreachable for matrices, but one also needs arguments
guaranteeing that those are really moments of selfadjoint operators.

○ Again, we would have to come up with a Cauchy transform which is not
reachable by Cauchy transforms of matrices (and which is indeed a Cauchy
transform, so satisfies Theorem 4.13). It’s hard to imagine how to get one
without writing it down concretely, or maybe at least writing down an equation
for it. Actually, a “random” Cauchy transform might do the job, but it is not
clear how to make this rigorous.

○ This is even more unclear; without having knowledge about the Cauchy trans-
form it seems quite unlikely to get a grasp on other functions of the variables.

So, for the moment, there is nothing we have to offer from our non-commutative
disribution perspective and we can only hope for some more insights.

The q-Gaussian operators
Since we had no place to start in the preceding case it is not surprising that we
could not say anything. So one might still have the hope that given some concrete
operators, of which we have at least some knowldege, we should have good chances
of saying something about its Cauchy transform and then mabye also the distribu-
tion of polynomials in them. Here comes an example which shows that even then
the situation is not so promising. This is a deformation of the situation of free
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semicirculars, but as they have no freeness in them we have problems with getting
a grasp on their Cauchy transform.
The q-Gaussian distribution, also known as q-semicircular distribution, was intro-

duced in [BSp, BKS] in the context of non commutative probability. Let us review
some basic definitions. In the following q ∈ [−1,1] is fixed. Consider a Hilbert space
H. The following is a q-deformation of the contructions from Example 1.7. On the
algebraic full Fock space ⊕n≥0H⊗n – where H0 = CΩ with a norm one vector Ω,
called “vacuum” – we define a q-deformed inner product as follows:

⟨h1 ⊗⋯⊗ hn, g1 ⊗⋯⊗ gm⟩q = δnm ∑
σ∈Sn

n

∏
r=1

⟨hr, gσ(r)⟩qi(σ),

where
i(σ) = #{(k, l) ∣ 1 ≤ k < l ≤ n;σ(k) > σ(l)}

is the number of inversions of a permutation σ ∈ Sn. In [BSp] it was shown that this
inner product is positive definite, and has a kernel only for q = 1 and q = −1.
The q-Fock space is then defined as the completion of the algebraic full Fock space

with respect to this inner product

Fq(H) =⊕
n≥0
H⊗n⟨⋅,⋅⟩q .

In the cases q = 1 and q = −1 we have to first divide out the kernel, thus leading to
the symmetric and anti-symmetric Fock space, respectively.
Now for h ∈ H we define the q-creation operator a∗(h), given by

a∗(h)Ω = h,
a∗(h)h1 ⊗⋯⊗ hn = h⊗ h1 ⊗⋯⊗ hn.

Its adjoint (with respect to the q-inner product), the q-annihilation operator a(h),
is given by

a(h)Ω = 0,

a(h)h1 ⊗⋯⊗ hn =
n

∑
r=1
qr−1⟨h,hr⟩h1 ⊗⋯⊗ hr−1 ⊗ hr+1 ⊗⋯⊗ hn.

[Never mind that we have switched here the convention whether the creation or
the annihilation operator gets the ∗. There are two conflicting traditions, one from
physics, where creation goes with the ∗, and one from operator theory where, in the
case q = 0, the left shift l, and not its adjoint l∗, is the basic isometry. Since we are
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now more on the physics side, our inner product has also become linear in its second
argument.]
Those operators satisfy the q-commutation relations

a(f)a∗(g) − qa∗(g)a(f) = ⟨f, g⟩ ⋅ 1 (f, g ∈ H).

For q = 1, q = 0, and q = −1 this reduces to the CCR-relations, the Cuntz relations,
and the CAR-relations, respectively. With the exception of the case q = 1, the
operators a∗(f) are bounded.
Let ξ1, . . . , ξn be an orthonormal system of vectors in H, then we consider the

selfadjoint operators Xi ∶= a(ξi) + a∗(ξi) (i = 1, . . . , n). For ϕ we take again the
vacuum expectation state ϕ(A) ∶= ⟨Ω,AΩ⟩. We are now interested in the non-
commutative distribution µX1,...,Xn of the operators X1, . . . ,Xn in the C∗-probability
space (B(Fq(H)), ϕ). We call this the (multivariate) q-Gaussian distribution. For
q = 0 it reduces to the non-commutative distribution of n free semicirculars. The q-
deformation has still some of the features of the q = 0 case. First of all, by definition
we have nice and concrete operators with this non-commutative distribution. Also
the formula for mixed moments in free semicirculars survives the deformation and
one has the following q-deformed Wick formula: for any ε ∶ {1, . . . , k} → {1, . . . , n}
we have

ϕ(Xε(1)⋯Xε(k)) = ∑
π∈P2(k)
π≤ker ε

qcr(π),

where cr(π) denotes the number of crossings of the pair-partition π, i.e., the number
of pairs of blocks which have a crossing.
So, this looks quite good: we have a nice realization of the q-Gaussian distribution

by very concrete operators and we have nice combinatorial formulas for all joint
moments. But does this mean that we understand this non-commutative distribution
well? Unfortunately, not really. In particular, we do not get a hold on its operator-
valued Cauchy transform.
Following our general strategy of going over from tuples of non-commuting op-

erators to one operator-valued operator we put our operators X1, . . . ,Xn on the
diagonal of an n × n matrix

X =
⎛
⎜⎜⎜
⎝

X1 0 . . . 0
0 X2 . . . 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Xn

⎞
⎟⎟⎟
⎠
. (13.1)

Understanding the distribution of (X1, . . . ,Xn) is now the same as understanding
the B-valued distribution of X, where we have put B ∶= Mn(C); the matrix X is
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what we would call an operator-valued q-semicircular element. In order to deal with
this we should understand the B-valued Cauchy transform GX = (G(k)

X )k∈N. For a
full understanding we need its structure as a fully matricial function with all its
matrix amplifications, but for many applications even the knowledge just on the
base level would be very helpful. But here we are stuck. We do not have any nice
concrete analytic description of this Cauchy transform.
From the situation for q = 0, the case of free semicirculars, one might have got the

impression that the one-dimensional and the multi-variate case are not so different
after all. In that case the quadratic equation for the Cauchy transform of the
scalar-valued semicircular distribution was replaced by a corresponding operator-
valued quadratic equation. The latter was of course harder than its scalar-valued
counterpart, but we could still deal with it. This might give the impression that
also in the case of general q we should be able to extend results from the n = 1 case
to the general operator-valued situation. This is, unfortunately, not the case. We
understand the n = 1 case for all q quite well, but all the nice structure there does
not extend into the operator-valued regime.
For n = 1, the q-Gaussian distribution is a probability measure on the interval

[−2/√1 − q,2/√1 − q], with analytic formulas for its density, see Theorem 1.10 in
[BKS]. For its Cauchy transform G we do not have an algebraic equation, but we
know a good continued fraction expansion of the form

G(z) =
1

z −
1

z −
1 + q

z −
1 + q + q2

z − . . .

.

The naive guess that one might also have a corresponding operator-valued version
of such a continued fraction expansion is unfortunately not true. Whereas in the
scalar case any probability measure has a continued fraction expansion for its Cauchy
transform, this does not hold any more in the operator-valued setting (see [AW]),
and it is easy to check that the matrix X in (13.1) for the q-Gaussian distribution
is one of the basic examples where this fails.
So in a sense, at the moment our machinery for operator-valued Cauchy-transforms

has unfortunately nothing to offer for dealing with q-Gaussian distributions. Of
course, Cauchy transforms are not everything and we have also other approaches and
tools to understand non-commutative distributions. In particular, there has been
quite some progress [GSh, Jek19] in our understanding of the q-Gaussian distribu-
tions, by describing them as free Gibbs states and using non-commutative versions
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of transport to relate different q’s. Combined with [BM] this gives then also regular-
ity properties of polynomials in q-Gaussian operators. What is missing, compared
to the free case, is a way to calculate the distribution of polynomials in q-Gaussians.
But this would be the content of another lecture series ...
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